Breakthrough Curves of CO₂ and CH₄ on Carbon Molecular Sieves -**Experiment and Modelling**

<u>A. Möller¹, J. Guderian², R. Staudt³, J. Möllmer⁴</u>

¹ Quantachrome GmbH, Odelzhausen/D

² FH Münster, Fachbereich Chemieingenieurwesen, Steinfurt/D

³ HS Offenburg, Fakultät Maschinenbau, Offenburg/D

⁴ Institut für Nichtklassische Chemie e.V., Leipzig/D

Introduction

Carbon molecular sieves (CMS) are widely used for the refinement of biogas to biomethane [1]. This application is based on kinetic separation due to size selective adsorption in PSA processes [2]. Modern CMS are tuned towards maximum sorption capacities regarding to the component, which is to adsorbed. By means of dynamic measurements, it is possible to examine such materials at realistic process conditions with respect to sorption kinetics and capacities.

In this study breakthrough curves of CO₂, CH₄ in He and their mixtures were measured on Shirasagi MSC CT-300. It can be shown, that an evaluation of the performance of such materials, based on isotherms are not always correct and will lead sometimes to misinterpretation of the whole separation process.

Objectives

Purification of biogas to biomethane necessary for grid feeding:

Typical distribution of main components in biogas / % [3]

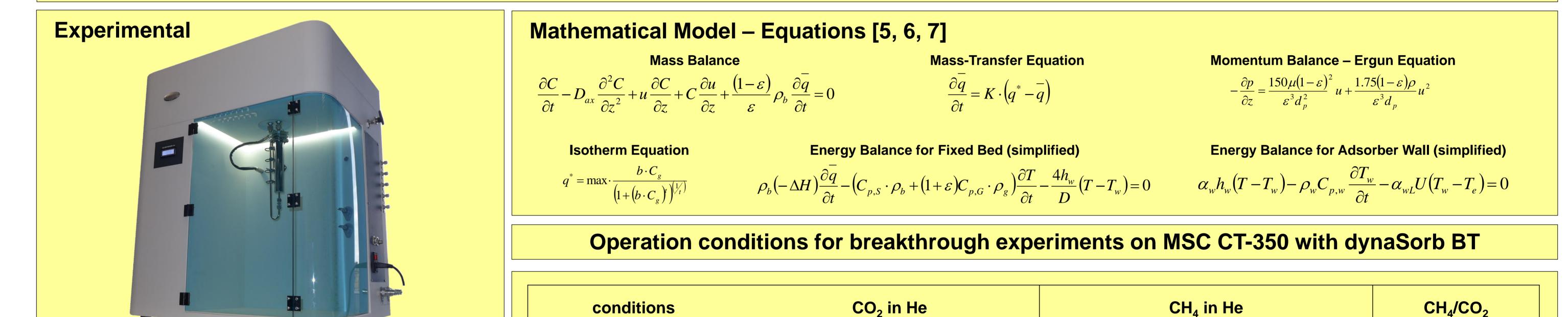
CH ₄	CO ₂	H ₂ O	H ₂ S	Other Components
40-75	25-55	<10	<0.5	Balance

Requirements to gas composition according to DVGW G 260 and 262 / % [4]

CH ₄	CO ₂	H ₂ O	H ₂ S	Other Components
acc. to Wobbe index	<6	<50 mg m ⁻³	<5 mg m ⁻³	Balance

- H_2S : Removal of H₂S with biological methods (first step), chemical/physical methods
- CO_2 : **Removal of CO₂ with carbon molecular sieves (PSA process)** or treatment with chemicals (amines)

C__1 /


C

0.6 -

0.4 -

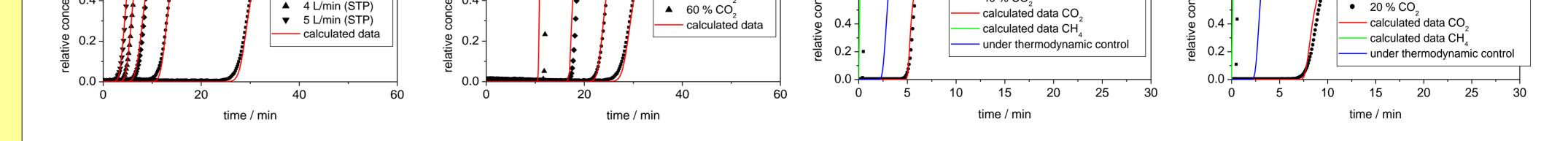
Test procedures to evaluate the performance of Carbon Molecular Sieves:

Determination of breakthrough at different gas velocities and pressures with dynaSorb BT, modeling and simulation of CH₄ purification.

The experiments were carried out with the commercial available device dynaSorb BT from Quantachrome Instruments at 40 °C. This device is designed for dynamic test routines under process relevant conditions.

As adsorbent the carbon molecular sieve Shirasagi MCS CT-350 from CarboTech AC was used. This material has been especially developed for removal of CO_2 from CH_4 rich gas mixtures. Before the measurements the material was regenerated at 150 °C for 4 h.

The predefined test routines and the mathematical model for evaluation all data are included in the software package of dynaSorb BT.


References

- [1] S. S. Cavenati, C.A. Grande, A.E. Rodrigues, Chem. Eng. Sci. 61, (2006)
- [2] R.T. Yang, Gas Separation by Adsorption Processes, Imperial College Press, Butterworth, Boston, (1987)
- [3] http://www.biogas-netzeinspeisung.at/technische-planung/funktionsprinzip-einerbiogasanlage/zusammensetzung-von-rohbiogas.html (2015.06.29)
- [4] DVGW G260, G 262, Arbeitsblätter der Deutschen Vereinigung des Gas- und Wasserfaches e.V. (2008)
- [5] A.M. Ribeiro, C.A. Grande, F.V.S. Lopes, J.M. Loureiro and A.E. Rodrigues, Chem. Eng. Sci. 63, (2008)

	V1	V2	V3	V4	V5
Temperature [K]	313	313	313	313	313
Pressure [MPa]	0.4	0.4	0.4	0.4	0.4
Fraction CH ₄ [%]	-	-	10	20 - 60	20 - 40
Fraction CO ₂ [%]	10	10 - 60	-	-	20 - 40
Flow rate [cm ³ s ⁻¹]	16.7 – 83.3	16.7	33.3 – 83.3	16.7	33.3
Isotherms of CO ₂ and C	H₄ on MSC CT-:	350 from [8]	Breakthroug	h curves of CH ₄ or	n MCS CT-350
B 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 500 1000 1500 pressure p / kPa	To u tunou 1.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0			5 CH ⁴ - 0.0 O	• 2 Lmin^{-1} (STP) • 3 Lmin^{-1} (STP) • 4 Lmin^{-1} (STP) • 5 Lmin^{-1} (STP) calculated data • $2 4 6 8$ time / min
	es of CO ₂ on MC		Due alsthue work		on MSC CT-350

- [6] J.A. Delgado, M.A. Uguina, J.L. Sotelo, B. Ruíz and J.M. Gómez, Adsorption 12, 5, (2006)
- [7] D.D. Do Adsorption Analysis: Equilibria and Kinetics, Series on Chemical Engineering, Vol. 2, Imperial College Press, London (1998)
- [8] A. Möller, J. Guderian, J. Möllmer, M. Lange, J. Hofmann, R. Gläser, Chem. Ing. Tech. 86, 1-2, (2014)

0.8

0.6 -

10 % CO

• 20 % CO

♦ 30 % CO

All breakthrough curves of CO₂ show the expected behaviour for a thermodynamic controlled system. However the curves for CH₄ have spontaneous breakthroughs due to the very low kinetic of the CH₄ molecules on MCS CT-350. This different behaviour increases the effective selectivity of the investigated material for the desired separation process considerable. This results in higher selectivity performance compared to the predicted thermodynamic selectivity from isotherms.

0.6 -

0.4 -

1 L/min (STP)

• 2 L/min (STP)

3 L/min (STP)

▲ 4 L/min (STP)

Therefore, detailed investigations of kinetics with dynamic methods, i.e. breakthrough experiments, are necessary for a reliable assessment of such materials. The evaluation of isotherms from static methods without considering kinetic effects will lead to considerable misinterpretation of such materials.

Quantachrome GmbH & Co. KG Rudolf-Diesel-Straße 12 D-85235 Odelzhausen

Tel. +49 8134 9324-0 Fax. +49 8134 9324 25 info@quantachrome.de www.quantachrome.de

• 40 % CH

• 40 % CO

0.8 -

0.6

20 % CH₄