Hochschule Offenburg University of Applied Sciences

Dynamische Methoden in der Adsorptionstechnik

Prof. Dr. habil. Reiner Staudt

Hochschule Offenburg

Fakultät für Maschinenbau und Verfahrenstechnik

Gliederung

- Einführung Definitionen, Begriffe
- Poröse Feststoffe
 Materialcharakteristik
- Isothermen
 Experiment,
 Isothermengleichungen
- Kinetik effekt. Transportkoeffizient

- Wärme isosterische Wärme
- Gemischadsorption Experiment, Modelle
- Reale Anwendungen TSA, PSA, Wärme

Hochschule Offenburg University of Applied Sciences

Adsorption Isothermal Equilibrium

Prof. Dr. habil. Reiner Staudt

Adsorption on surfaces / separation effects

Technical usable effects

Thermodynamic effect (differences

between the sorption capacities)

Knowledge of Isotherms

Kinetic effect (differences between the

sorption velocities)

Knowledge of transport coefficients

Steric effect (molecular sieve effect)

Knowledge geometrical parameters

Adsorption process - Input Data

Prediction of breakthrough curves

Cycle duration, Dimension of adsorber...

Modeling – Unknown Parameter

	Parameter	Get from	Alternative
Mas	s Balance		
D _{ax}	Axial Dispersion Coefficient	Breakthrough on fixed bed (for example inert material)	Calculation from gas velocity particle size and other Parameters ^{1,2)}
k _{eff}	Mass Transfer Coefficient	Fitting the model on breakthrough Curves	From Uptake rate experiments?
$n(c_i)$	Adsorbed amount	From Isotherms	Breakthrough exp.
Ener	gy Balances		
∆h	Heat of adsorption	From Isotherms	Breakthrough exp.
λ h	Dispersion Coefficient	Experiments on packed beds (Breakthrough exp.) ³⁾	Set Zero to simplify energy balance
U _g	Heat transfer Coefficients	Fitting the model on breakthrough Curves	Fitting the model on breakthrough Curves
		1) W. Kast, Adsorption aus	der Gasphase. (1988)

- 1) W. Kast, Adsorption aus der Gasphase, (1988)
- 2) F.V.S. Lopes et al., Sep. Sci. Technol. 44 (2009)
- 3) V.S. Prasad et al., Int. J. of Heat and Mass Transfer 45 (2002) 6

Modeling – Unknown Parameter

Pa	arameter	Get from	Alternative
Thermophysical Properties			
c _{PS}	Heat capacity of porous material	Literature	Experiments
c _{PG}	Heat capacity of gas phase	Literature	Experiments
q_i^*	Density of gas phase	Equation of State	Experiments
$ ho_{W}$	Heat capacity of wall	Literature	Experiments
$\alpha_{\rm w} \alpha_{\rm wL}$	Surface to Volume ratio	Geometry	

Porous materials

- Activated Carbon
- Zeolite
- Molecular sieve
- Silicagel
- ≻ MOF

30. Mai 2017

Classification of pores

Characterisation of porous materials

- Pore size distribution: DIN 66135
- BET surface, pore radius: DIN 66135
- Iodine number: ASTM D4607 94
- Water content: DIN 51718
- Ashes content: DIN 51719
- Density (bulk, Helium)
- Abrasion, Paricle size distribution
- Benzole Adsorption at rel. Pressure: 0.9, 0.1, 0.01, 0.001
- VDI-Richtlinie 3674

Excess amount adsorbed

Gibbs definition of excess amount adsorbed

$$\boldsymbol{m}_{GE} \,= \left(\boldsymbol{\rho}^{\mathrm{f}} \,- \boldsymbol{\rho}^{\mathrm{f}\,'}\right) \! \left(\boldsymbol{V} - \boldsymbol{V}^{\mathrm{s}}\,\right)$$

Total mass in system m_{total} 12 + 4Mass in gas phase m^f 8 + 4 Gibbs excess mass m_{GE}

4

Excess amount adsorbed

Prof. Dr. habil. Reiner Staudt

Experiment

Isotherms

- Isotherms of pure components
- Pressures up to 3.5 MPa
- Temperature range: 260 to 700 K

Breakthrough Curves

- Breakthrough curves
- Pressures up to 1.0 MPa
- Ambient temperature

Procedure of measurement I

Start: Calibration of instrument

- \rightarrow Volume of Sample
- \rightarrow Dead volume

Step 1: Measurements without sample \rightarrow Value of unloaded microbalance \rightarrow Value of unloaded adsorber

Step 2: Installation of sample

Step 3: Activation / regeneration of sample \rightarrow Mass lost of sample by desorption

Procedure of measurement II

Regeneration Process:

- Time (cp. technical process)
- Temperature, Pressure (cp. technical process)
- Gas flow

In Dynamic experiment:

• Close to technical application / real process

Step 4: Measurement with non-adsorbing gas:

- \rightarrow Helium volume
- \rightarrow Gas velocity

Helium measurement = reference measurement

Procedure of measurement III

Step 5: Measurement of adsorption isotherm / break through curve → Excess amount adsorbed

Adsorption equilibrium

 \rightarrow Time (cp. technical process)

 \rightarrow Constant Microbalance signal

Step 6: Measurement of desorption / regeneration \rightarrow regeneration time and conditions

Instrumental setup

balance

- time-resolution 1 sec
- mass-resolution 10 µg
- temperature RT-500 °C

pressure transducers

- 0.01 mbar 10 mbar
- 1 mbar 200 mbar
- 200 mbar 30 bar

temperature sensor

PT 100 sensor

vacuum

• turbomoleculare pump

Adsorption Choice of zeolite

Hochschule Offenburg University of Applied Sciences

INCurves120

$$\begin{split} \Omega &= \quad m \; - \; V^{as} \; \; \rho^{f} \\ &= \; \dot{m}_{flow} \, {}^{*}t \, - \, V_{col} \, {}^{*}\rho^{f} \end{split}$$

Calibration of instrument: volume, WLD, ... Measurement: concentration c(t), massflow m_{flow} and time t

Breakthrough curves

Measurement of breakthrough curves

- on approx. 100 g sample
- up to 10 bar, 3 different gas inlets ($2 \times 5 \text{ NL min}^{-1}$, $1 \times 1 \text{ NL min}^{-1}$)
- detection of gas composition with thermal conductivity detector
- measurement of temperature profiles (4 sensors)

INCurves120

Zeit

C/C

Reactor without isolation

30. Mai 2017

| Prof. Dr. habil. Reiner Staudt

Hochschule Offenburg University of Applied Sciences

Fascination Zeolite - Water

Heat of Adsorption - Experiment

Quelle: Zimmermann/Keller Universität Siegen

Isosteric heat of adsorption

Heat of adsorption

Kinetics of Adsorption

Transportmechanismen:

- Festbettdiffusion
- Grenzfilmdiffusion
- Porendiffusion

Linear Driving Force

Zusätzlich:

Wärmetönung

Gravimetric experiment

Uptake of Adsorption of water in zeolite NaYBFK 80% rel. hum.

Kinetics - Linear Driving Force

$$\frac{\mathrm{dX}}{\mathrm{dt}} = \mathrm{k_{eff}} \cdot \frac{\mathrm{A_{Partikel}}}{\rho_{P}} \cdot (\mathrm{X_{GG}} - \mathrm{X})$$

$\Delta X \rightarrow$ concentration gradient

$k_{eff} \rightarrow effective transport coeffizient$

Kinetics – Transport coefficient

Hydrogen Purification - Results for methane

* Bastos-Neto et al., Chem. Ing. Tech., 83 (2011)

Volume-Gravimetry & Volumetry with GC

Calibration: Volume of vessel & sample holder, GC ... Volume-Gravimetry: Measurement: p, T, m Calculation: m^{fl}₁, m^{fl}₂, m₁, m₂

Volumetry with GC: Measurement: p, T, c Calculation: m^{fl}₁, m^{fl}₂, m₁, m₂

CO/H2 Mixture on 5A Zeolite

CO2/N2 an AK Norit R1, T = 298 K

Results - Influence of the input concentration

Results - Ternary Mixtures

Ternary Mixture CO₂/CH₄/H₂ – AC CarboTech D 50/3 C PSA

Results - Multicomponent system

Results - Multicomponent system

N_2 / CO_2 / CH_4 (10% / 40% / 50%) in AC Norit NR1 Extra

Mass AC = 75,9 g, p = 1,2 bar

Adsorption Isotherm Model

Dynamic equilibrium based on Langmuir theory

- Langmuir Adsorption Isotherm
- BET Isotherm
- Tòth Isotherm
- Sips Isotherm
- Freundlich Isotherm
- Virial equation

Thermodynamik in sense of Gibbs

Potential theory of Polanyi

Adsorption Isotherm Model

Dynamic equilibrium based on Langmuir theory

Thermodynamik in sense of Gibbs

- Gibbs'sche Adsorptionsisotherme
- Vacancy Solution Model (VSM)
- Associating Theory of Adsorption (ATA)
- Ideal Adsorbed Solution Theory (IAST) and modification

Potential theory of Polanyi

- Dubinin
- Myers Prausnitz Dubinin Approach (MPD)

Experiment – accuracy

Pressure	Temperature	Mass	Volume of sample holder
∆p = 0.002 MPa	$\Delta T = 0.01 \text{ K}$	$\Delta m = 0.01 mg$	$\Delta V = 0.0002 \text{ cm}^3$

Volume of vessel	Concentration	Gas Flow	Time
$\Delta V = 0.02 \text{ cm}^3$	$\Delta c = 0.1 \%$	$\Delta V^{t} = 0.1 \text{ ml/min}$	∆t =0.01 s

Gravimetry	Volumetry	Breakthrough	Gravimetry dyn.
∆m/m = 0.1 %	∆m/m = 0.5 %	∆m/m = 0.5 %	∆m/m = 0.25 %

Choice of my experimental setup

Gravimetry

- Direct measurement of m, p, T
- Mass change during sample preparation
- Uptake curve
- Adsorption isotherm (Kinetics)

Volumetry

- Direct measurement of p, T
- "Simple" apparatus
- Adsorption isotherm
- Corrosive components

Breakthrough curve

- Direct measurement of c, p, T
- "Simple" apparatus
- Pure and Mixed gas components
- Adsorption isotherm
- Kinetics of process
- Small concentration
- Close to technical separation / regeneration

Basics of adsorption technique / processes

- Temperature swing process (TSA)
 - Desorption by increase of T (A to D)
 - Hot inert gas, Water vapor, Electrical heating
- Pressure swing process (PSA/VPSA)
 - Desorption by decrease of p (A to B)
 - PSA adsorption at higher pressures; regeneration at atmospheric pressure⁽¹⁾
 - VPSA adsorption at higher pressures;
 regeneration under vacuum ⁽¹⁾
- Combined TSA-PSA
 - Desorption by increase of T and decrease of p (A to C)⁽¹⁾

(1) D. Bathen, M.Breitbach, Adsorptionstechnik, Springerverlag, 2001

Adsorption isotherm @ 298 K, H₂, CO₂, CO, CH₄, N₂

Adsorptionsisothermen an AK

Adsorption Isotherms of Ar, Kr, O₂ and Xe

SORBONORIT B3

| Prof. Dr. habil. Reiner Staudt

Adsorber zur Lösungsmittel-Rückgewinnung (TSA-CSA)

TSA-Festbett-Adsorber: Desorption mit Wasserdampf

Pressure swing adsorption

- Air separation into N_2 (>99,9 %), O_2 (< 97 %) or Ar
- Production / Cleaning of H₂
- Separation of CO₂ from biogas
- Drying of compressed air

Hydrogen – Production by PSA

Use	Purity Requirements
Ammonia Synthesis	< 10 ppm CO_X , X = 1,2
Compressed Gas	< 10 ppm CO _X , 100 ppm CH ₄ , < 200 ppm N ₂
Fuel Cells	< 30 ppm CO
Electronics (Semiconductors)	< 10 ppb N ₂ , O ₂ , CH ₄ , CO, C _x H _y
Food Industry	3.1 – 5.5 (% Vol. H ₂)

Hydrogen Purification

Hydrogen Purification – PSA Unit

Hydrogen Purification

Measurement of Breakthrough Curves Measurement of Isotherms System Regeneration System Regeneration AC's: 423 K AC's: 423 K Zeolites: 673 K Zeolites: 673 K He atmosphere Vacuum >10 hours >10 hours setup of stepwise concentration changing of and pressure pressure **Determination of** Adsorption Desorption sorption equilibria no mass variation at only H₂ constant pressure and temperature **Determination of** breakthrough curves

Hydrogen Purification Validation of the Experimental Breakthrough Curves

Lines are Toth fit based on gravimetrically measured results Points correspond to measured breakthrough curves

Adsorption based gas separation processes (I)

Process	Feed	Product(s)
Air separation	Air, dry, clean	Nitrogen (N ₂) Oxygen
Pressure swing adsorption (PSA)]		Oxygen, Methan, Hydrogen
Air conditioning	Air loaded with exhaust gases from industry, traffic, resi-dential heating etc. N_2 , O_2 , H_2O , CO_2 , H_2S , aromatics etc.	Clean air N ₂ , O ₂ , (H ₂ O)
Temperature swing adsorption (TSA) Air purification Solvent recovery	Air loaded with VOC (Volatile Organic Compounds), BTX (Benzole, Toluene, Xylole), Smells, odors	Clean air (N ₂ , O ₂ , Ar) VOC, BTX

Adsorption based gas separation processes (II)

Process	Feed	Product(s)
Carbon dioxide removal	Blast-furnace gas CO_2 , CO , H_2 , H_2O	Syngas (H ₂ , CO)
Drying of air prior to pressurization	Humid air	Dry air
Flue-gas purification	Exhaust gases of power stations N ₂ , O ₂ , CO ₂ , SO ₂ ,NO _x , etc. Hg from crematories, Isotopes nuclear	"Clean flue gases" N ₂ , O ₂ , H ₂ O, CO ₂
Hydrogen separation	Reforming gas, Blast-furnace gas H_2 , CO, CO ₂ , CH ₄ , H ₂ O	Hydrogen rich gas (Syngas: H ₂ , CO)
Natural gas enrichment of methane content	Raw gas from well CH_4 , CO_2 , N_2 , H_2S , CO , etc.	Town gas CH ₄ , H ₂ , CO

Wärmespeicher

Pilotanlage zur Wärmespeicherung

Möschle GmbH, Behälterbau, Ortenberg,

Pilotanlage

Befeuchtungssystem:

Möschle GmbH, Behälterbau, Ortenberg,

Heizen im Winter

Temperaturanstieg durch Adsorption von Wasser

Adsorption von Wasser im Zeolith Köstrolith 5ABFK

Mobiler Wärmespeicher

My Conclusion

Dynamic characterisation of adsorption process delivers:

- 1. Adsorption Isotherm
- 2. Transport coefficient
- 3. Heat production / Temperature change during process

Dynamic measurements are applicable for

- 1. Experimental simulation of real technical adsorption process
- 2. Wide range of pressure and temperature
- 3. Low concentrations, multicomponent gas,...

Simple and robust apparatus

Acknowledgement

We greatfully acknowledge

Land Baden-Württemberg, Industry on Campus

BMBF - KMU Innovativ

Lea Treick, Phillip Schandelmaier (Bach. Sc.) Dr. A. Möller, Dr. J. Möllmer Prof. Dr. Moisés Bastos Neto