

# Modeling of dynamic sorption processes

Andreas Möller 30.05.2017

Leipziger Symposium "dynamische Sorptionsprozesse"



# **Outline überarbeiten!**



- 1. Introduction
- 2. Scope of Modeling / Simulations
- 3. Modeling / Simulation

**Input Parameter** 

- Mass and Energy balances
- LDF approach

Isotherms

Choice of energy and overall mass balance

- 4. Influence of most important parameters
- 5. Working with the model Examples
- 6. Conclusion







# **1.** Dynamic gas sorption – a multi-scale process





#### Mesoscopic

adsorbent

#### Microscopic

adsorption

• Size of Adsorber

3

• Shape of Adsorber

Macroscopic

- Nature of the Fixed Bed
- Bed Porosity
- Shape of Particles

Textural Properties

heat of adsorption

adsorptive

transport into particle

- Surface Characteristics
- Accessibility

# **1. General Remarks I**

## Different segments of a breakthrough curve



time

#### Determination of technical usable sorption capacity

• Can be used as **benchmark** for separation performance of adsorbents



time

- Mass Transfer coefficient, axial dispersion, shape of isotherm
- Heat effects, heat dissipation
- The time interval of mass transfer zone has to be **minimized**

#### • Determination of saturation capacity

• By assuming of thermodynamic controlled system  $\rightarrow$  Measurement of **isotherms** possible



4





## **1. General Remarks II - Equilibria**



2 component mixture: CO<sub>2</sub>/He (non-adsorbable carrier)

 $\rightarrow$  Pure component equilibria

- 2 component mixture: CO<sub>2</sub>/CH<sub>4</sub> (adsorbable)
  - $\rightarrow$  Partial loading for CO<sub>2</sub> (mixture data)



- 3 component mixture: CO<sub>2</sub>/CH<sub>4</sub>/He (non-adsorbable carrier)
- Weakly adsorbed component (CH<sub>4</sub>) is displaced by stronger adsorbed component (CO<sub>2</sub>)

 $\rightarrow$  partial desorption

- → role up effect (evaluation difficult!)
- 3 component mixture: CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> (adsorbable)

 $\rightarrow$  Ternary equilibrium data

### Parametric Studies & Kinetics

- Quantifying kinetic parameter from breakthrough curves
- Understanding of Sorption Characteristics on Fixed Bed Adsorbers under industrially relevant conditions
- Experimental time can be drastically reduced and parametric studies can be easily performed
- Estimation of role-up effects and dynamic of co-adsorption phenomena
- Calculation of so called **Constant Pattern Profiles**
- Calculation of PSA-cycles based on Mass- and Energy Balances
- Can support Upscaling or Process design



# 2. Scope of Simulation II



## Example: CO<sub>2</sub> Adsorption on D55/1.5



#### Observations:

- 1) Desorption curve flatter than Adsorption curve
- 2) Desorption time higher than Adsorption time
- 3) Adsorption time 5.78 min (c<sub>out</sub>< 0.2 %)

Questions concerning:

- 1) Kinetic parameter ( $k_{LDF}$ )
- 2) Total pressure during each step

3) Adsorption/Desorption times

4) Purge flow during Desorption

Adsorption: 5% CO<sub>2</sub> in N<sub>2</sub> at 40°C, 5 bar, 2000 ml/min on D 55/1.5

**Desorption:** Purging with 2000 ml/min  $N_2$  at 40°C, 5 bar

# **3. Modeling – necessary Input Parameter**





Cycle duration, pressure range...

Red:properties of adsorbent/adsorptive systemBlack:properties of adsorber and adsorber wall



## Mass Transfer coefficient $k_{LDF}$



\* W. Kast, Adsorption aus der Gasphase: Ingenieurwissenschaftliche Grundlagen und technische Verfahren, 1.Aufl., VCH Wiley Verlag, Weinheim, 1988.

# **3. Modeling – Mass and Energy balances**





\* M.S. Shafeeyan et. al, Chem. Eng. Res. Des. 92 (2014)



## **Example for Diffusion - Equation**

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial z^2} \longrightarrow \frac{C_z^{t+1} - C_z^t}{\Delta t} = D \frac{C_{z+1}^{t+1} - 2C_z^{t+1} + C_{z-1}^{t+1}}{\Delta z^2}$$

Transfer of Partial Differential Equation (PDE) to algebraic Equations

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -D\frac{\Delta t}{\Delta z^2} & 1 + 2D\frac{\Delta t}{\Delta z^2} & -D\frac{\Delta t}{\Delta z^2} & 0 & 0 \\ 0 & -D\frac{\Delta t}{\Delta z^2} & 1 + 2D\frac{\Delta t}{\Delta z^2} & -D\frac{\Delta t}{\Delta z^2} & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} (\vec{C}(t+1)) = (\vec{C}(t))$$

Large Algebraic Equation System

- Vector length depends on height of Adsorber and size of  $\Delta z$
- Number of steps depends on Time and  $\Delta t$

$$-D\frac{\Delta t}{\Delta z^2}C_{z+1}^{t+1} + \left(1+2D\frac{\Delta t}{\Delta z^2}\right)C_z^{t+1} - D\frac{\Delta t}{\Delta z^2}C_{z-1}^{t+1} = C_z^t$$

#### Important Comments for Mass balance

- Three solver parameter  $\Delta z$ ,  $\Delta t$  and ratio  $\Delta t$  / $\Delta z^2$
- Depending on stiffness of PDE solver converge to correct solution and sufficient accuracy mostly for:

#### $\rightarrow$ small $\Delta z$ and

- $\rightarrow \Delta t \ll \Delta z$
- $\rightarrow$  Not always guaranteed convergence
  - → Especially for very steep isotherms

| Dynamic Simulation                                  | atagina. In                            |                        |                                     |                                |
|-----------------------------------------------------|----------------------------------------|------------------------|-------------------------------------|--------------------------------|
| File Clipboard Units mass balances energy b         | oalances Help                          |                        |                                     |                                |
| global Parameters Adsorptives Calculation Table (si | mulated data)   Chart (simulated data) | Reactorprofiles PSA-C  | Advorbent                           |                                |
|                                                     |                                        |                        | mass [g]                            | 75.30 📄 from experimental data |
|                                                     |                                        |                        | particel diameter [mm]              | 3.0                            |
| height [cm]                                         | 20.0                                   |                        | bed porosity                        | 0.30                           |
| inner diameter [cm]                                 | 3.0                                    |                        | particle porosity                   | 0.30                           |
| gas flow [ml (STP) /min]                            | 1001 👘 u constant 🔻                    | from experimental data | heat capacity [J/K/o]               | 0.88                           |
| axial dispersion [cm2/min]                          | 16.43 🔔 user defined 🔻                 |                        |                                     |                                |
| environmental temperature [°C]                      | 39.8 💌 isothermal 🔻                    | from experimental data | Carrier Gas                         |                                |
| pressure [bar]                                      | 5.0                                    | from experimental data | molecular weight [g/mol]            | 30.0                           |
| wall thickness [mm]                                 | 3                                      |                        | heat capacity [J/K/g]               | 1.01                           |
| density wall [g/cm3]                                | 7.90                                   |                        |                                     |                                |
| heat transfer Solid-Gas [W/m2/K]                    | 20.0                                   |                        |                                     |                                |
| heat transfer bed-wall [W/m2/K]                     | 50.0                                   |                        | height of temperature sensors       |                                |
| heat transfer wall env. [W/m2/K]                    | 400.0                                  |                        | height of temperature sensor 4 [cm] | 16.0                           |
| heat capacity wall [J/K/g]                          | 0.477                                  |                        | height of temperature sensor 3 [cm] | 12.0                           |
| axial heat dispersion [J/K/min/cm]                  | 0.20                                   |                        | height of temperature sensor 2 [cm] | 8.0                            |
|                                                     |                                        |                        | height of temperature sensor 1 [cm] | 4.0                            |
|                                                     |                                        |                        |                                     |                                |
|                                                     |                                        |                        |                                     |                                |



- No knowledge of script language
- Simple input form for parameter
- Overview of used isotherm model
- No knowledge of solver necessary
- Usage of own  $\Delta z$ ,  $\Delta t$  values possible
- Output of stoiciometric values
- Comparison of calculations with Experiment

| Dynamic Simulation                              |                                   |                           |                  |              | -             |                                                                                     |
|-------------------------------------------------|-----------------------------------|---------------------------|------------------|--------------|---------------|-------------------------------------------------------------------------------------|
| File Clipboard Units mass balances energy       | gy balances Help                  |                           |                  |              |               |                                                                                     |
| global Parameters Adsorptives Calculation Table | e (simulated data) Chart (simulat | ted data) Reactorprofiles | PSA-Calculations |              | _             | isotherm model                                                                      |
|                                                 |                                   |                           |                  |              |               |                                                                                     |
|                                                 |                                   | Adsorptiv 1               | adsorptive 2     | adsorptive 3 | adsorptive 4  | SIPS 🔹                                                                              |
| input concentration (process cond.) [Vol.%]     | 1.0000000                         | 4.98                      | 0                | 0            | 0             |                                                                                     |
| effective mass transfer coeff. [1/min]          | 10.000                            | 20                        | 0                | 0            | 0             |                                                                                     |
| molecular Weight [g/mol]                        | 44.0                              | 44                        | 0                | 0            | 0             |                                                                                     |
| afinity constant [1/bar]                        | 2.000                             | 0.42795                   | 0                | 0            | 0             | $(K \cdot p)^{t}$                                                                   |
| maximal loading [mg/g]                          | 0.300                             | 230.504                   | 0                | 0            | 0             | $q_{eq} = q_{\max} \cdot \frac{(r \cdot p)^{\epsilon}}{1 + (K \cdot p)^{\epsilon}}$ |
| Toth/Sips/Freundlich exponent                   | 1.000                             | 0.79585                   | 0                | 0            | 0             |                                                                                     |
|                                                 |                                   |                           |                  |              |               |                                                                                     |
| heat of sorption [kJ/mol]                       | 20.00                             | 15.966                    | 0                | 0            | 0             |                                                                                     |
| temperature dependence of maximal loading       | 0.000                             | 0.745844                  | 0                | 0            | 0             | Multicomponent LAI                                                                  |
| temperature dependence of exponent              | 0.000                             | 0.317224                  | 0                | 0            | 0             |                                                                                     |
|                                                 |                                   |                           |                  |              |               | number of components                                                                |
|                                                 |                                   | Set value                 | Set value        | Set value    | Set value     | 1                                                                                   |
|                                                 |                                   |                           |                  |              |               |                                                                                     |
|                                                 |                                   | / edit values             | edit values      | edit values  | / edit values |                                                                                     |
|                                                 |                                   |                           |                  |              |               |                                                                                     |
|                                                 |                                   |                           |                  |              |               |                                                                                     |



- No knowledge of script language
- Simple input form for parameter
- Overview of used isotherm model
- No knowledge of solver necessary
- Usage of own  $\Delta z$ ,  $\Delta t$  values possible
- Output of stoiciometric values
- Comparison of calculations with Experiment

| 🧏 Dynamic Simulation                                                             |                                       |                                |                                 |        |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------|--------------------------------|---------------------------------|--------|--|--|--|
| File Clipboard Units mass balances energy bala                                   | ances Help                            |                                |                                 |        |  |  |  |
| global Parameters Adsorptives Calculation Table (simul                           | lated data) Chart (simulated data) Re | actorprofiles PSA-Calculations |                                 |        |  |  |  |
| calculate breakthrough curve                                                     | fitting of experime                   | ital data                      | calculated parameter            |        |  |  |  |
| estimation of solver parameters                                                  | utomatic selected Curve               | e for Fitting                  | Reactor Volume [cm3]            | 141.37 |  |  |  |
| reliability factor (increase for exact solutions) 1.0                            | <ul> <li>Adsorptiv</li> </ul>         | 1                              | gas velocity (id) [cm/min]      | 109.5  |  |  |  |
| x-step size (recommendation (max.): =0.50000)                                    | 00 💼 🔿 adsorptiv                      | e 2                            | app. particle density [g/cm3]   | 0.761  |  |  |  |
| observation height [cm] (max. 20 cm)                                             | adsorptiv                             | e 3                            | skeleton density [g/cm3]        | 1.087  |  |  |  |
| time resolution factor 1.0                                                       | adsorptiv                             | e 4                            | stoich. time Adsorptiv 1 [min]  | 25.57  |  |  |  |
| t/x^2-ratio (recommendation (max.): =0.008949)                                   | 8949 💼                                | sfer gas wall                  | stoich. time adsorptive 2 [min] | 0.00   |  |  |  |
| number of calculations (corr. time: =76.71 min) 1714                             | 4 🔿 heat tran                         | sfer wall env                  | stoich. time adsorptive 3 [min] | 0.00   |  |  |  |
| required calculation number for 3 x stoich. time: 1714                           |                                       |                                | stoich. time adsorptive 4 [min] | 0.00   |  |  |  |
| number x-direction (vector size ) 40                                             |                                       |                                | equ. loading Adsorptiv 1 [g/g]  | 0.033  |  |  |  |
| <ul> <li>semi-implicit (Lax-Wendroff)           mplicit (Upv         </li> </ul> | wind)                                 |                                | equ. loading adsorptive 2 [g/g] | 0.000  |  |  |  |
|                                                                                  |                                       |                                | equ. loading adsorptive 3 [g/g] | 0.000  |  |  |  |
| init solver Calculate X cano                                                     |                                       | it exp. Data                   | equ. loading adsorptive 4 [g/g] | 0.000  |  |  |  |
|                                                                                  | Iteration                             |                                |                                 |        |  |  |  |
|                                                                                  |                                       |                                |                                 |        |  |  |  |



- No knowledge of script language
- Simple input form for parameter
- Overview of used isotherm model
- No knowledge of solver
   necessary
- Usage of own Δz, Δt values possible
- Output of stoiciometric values
- Comparison of calculations with Experiment





- No knowledge of script language
- Simple input form for parameter
- Overview of used isotherm model
- No knowledge of solver
   necessary
- Usage of own  $\Delta z$ ,  $\Delta t$  values possible
- Output of stoiciometric values
- Comparison of calculations with
   Experiment

## **3. Modeling - Isotherm models**





## 3. Modeling - Energy and overall balances



# **3. Modeling - Further Simplifications**





 $\rightarrow$  Blow-Down within Desorption

Influence of isotherm on breakthrough





## Influence of u and $c_{in}$



time Increasing of velocity *u*:

Breakthrough shifts to lower times, often breakthrough becomes steeper

 $\frac{\partial \overline{q}_i}{\partial t} = k_{eff} \cdot \left( q_i^* - \overline{q}_i \right)$ 



## Increasing of C<sub>in</sub>:

- Curved isotherm: breakthrough shifts A) to shorter times, curves becomes steeper
- Linear isotherm: breakthrough time B) remains constant

time

Influence of  $c_{in}$  on breakthrough depends on shape of isotherm!



For small  $D_{ax} \rightarrow$  steepness of breakthrough curves approaches limit



<sup>k</sup>eff

20



For very small  $k_{\rm eff}$  spontaneous breakthrough can occur

For small D<sub>ax</sub> steepness of breakthrough curves tended to a limit





#### Influence of thermal effects

Temperature

Heat Balance Gas / Adsorbent



#### Increasing of sorption heat:

Breakthrough shifted to shorter times because sorption capacity=FKT(T) Mass transfer zone becomes bigger, low slope to input concentration Non-isothermal results differ considerably from isothermal results Heat effects have to be considered in most cases (*i.e.* high sorptive concentrations).



Influence of thermal effects (heat transfer parameter)



Increasing of inner heat transfer  $h_w$  results in decrease of temperature maximum Increasing of outer heat transfer  $U_g$  results in faster cooling rates

Big influence of these parameters on history of temperature inside adsorber



> Comparison for different materials under same testing conditions allows statements about kinetic performance





#### **Replacement effects**



# SIPS model (from isotherms):

5. Working with the model – Example II



- Q (equivalent to  $-\Delta H_{\Theta=0.5}$ )
- Q <sub>CO2</sub>: 15.9 kJ mol<sup>-1</sup>
- Q <sub>CH4</sub>: 11.9 kJ mol<sup>-1</sup>

#### Fitting Heat Transfer Coeff.

- $h_w : \sim 30 \text{ W m}^{-2} \text{ K}^{-1}$  (Gas, Fixed Bed/Wall)
- U<sub>g</sub>: ~ 400 W m<sup>-2</sup> K<sup>-1</sup> (Wall/Liquid)

Input Q in energy balance

# Replacement effects – Temperature profiles Use of integral heat of adsorption with



5% CO<sub>2</sub> 15% CH<sub>4</sub> in He at 20°C, 5 bar, 2500 ml/min on D 55/1.5

- Input nue in energy Input nue Input nue CH<sub>4</sub> induced higher temperature effect
  - Model can describe temperature profiles qualitatively
  - Underestimation of temperature peaks
  - Experiment shows mostly sharper temperature profiles
    - $\rightarrow$  differences due to simplification of no radial gradients
    - $\rightarrow$  radial gradients in experiment expected due to external liquid cooling





#### **Replacement effects**



## Replacement effects – Temperature profiles

Use of integral heat of adsorption with SIPS model (from isotherms):

 $q_{s} = q_{\max} \cdot \frac{(K_{i} \cdot c_{i})^{t_{i}}}{1 + \sum_{j=1}^{n} (K_{j} \cdot c_{j})^{t_{j}}}$  $K_{i} = K_{i,0} \cdot \exp\left(\frac{Q}{R}\left(\frac{1}{T} - \frac{1}{T_{0}}\right)\right)$  $q_{\max,i} = q_{\max,i,0} \cdot \exp\left(\chi_{i}\left(1 - \frac{T}{T_{0}}\right)\right)$  $t_{i} = t_{i,0} + \alpha_{i}\left(1 - \frac{T_{0}}{T}\right)$ 

- Q (equivalent to  $-\Delta H_{\Theta=0.5}$ )
- Q <sub>CO2</sub>: 25.1 kJ mol<sup>-1</sup>
- Q <sub>CH4</sub>: 17.5 kJ mol<sup>-1</sup>

#### Fitting Heat Transfer Coeff.

- $h_w : \sim 23 \text{ W m}^{-2} \text{ K}^{-1}$  (Gas, Fixed Bed/Wall)
- $U_g : \sim 500 \text{ W m}^{-2} \text{ K}^{-1}$  (Wall/Liquid)



Input hw in energy



- CO<sub>2</sub> induced higher temperature effect
- Model can describe temperature profiles quite well
- Slightly underestimation of temperature peaks
  - ightarrow differences due to simplification of no radial gradients
  - ightarrow radial gradients in experiment expected due to external liquid cooling





#### **Kinetic Separation**





#### **Kinetic Separation**



5% CO<sub>2</sub> 15% CH<sub>4</sub> in He at 20°C, 5 bar, 2500 ml/min on MSC-CT-350

balance



#### Kinetic separation – Temperature profiles

Use of integral heat of adsorption with SIPS model (from isotherms):

 $q_{s} = q_{\max} \cdot \frac{(K_{i} \cdot c_{i})^{t_{i}}}{1 + \sum_{j=1}^{n} (K_{j} \cdot c_{j})^{t_{j}}}$  $K_{i} = K_{i,0} \cdot \exp\left(\frac{Q}{R}\left(\frac{1}{T} - \frac{1}{T_{0}}\right)\right)$  $q_{\max,i} = q_{\max,i,0} \cdot \exp\left(\chi_{i}\left(1 - \frac{T}{T_{0}}\right)\right)$ 

- $t_i = t_{i,0} + \alpha_i \left( 1 \frac{T_0}{T} \right)$
- Q (equivalent to  $-\Delta H_{\Theta=0,5}$ )
- Q <sub>CO2</sub>: 21.5 kJ mol<sup>-1</sup>
- Q <sub>CH4</sub>: 9.6 kJ mol<sup>-1</sup>

#### Fitting Heat Transfer Coeff.

- $h_w : \sim 40 \text{ W m}^{-2} \text{ K}^{-1}$  (Gas, Fixed Bed/Wall)
- $U_g$  : ~ 450 W m<sup>-2</sup> K<sup>-1</sup> (Wall/Liquid)

Input Q in energy



5% CO<sub>2</sub> 15% CH<sub>4</sub> in He at 20°C, 5 bar, 2500 ml/min on MSC- CT-350

- $\frac{1}{100} \frac{1}{100} \frac{1}$ 
  - $\rightarrow$  CH<sub>4</sub> no contribution to temperature profiles due to slow kinetic
  - Model can describe temperature profiles qualitatively
  - Underestimation of first temperature peak
    - ightarrow differences due to simplification of no radial gradients
    - ightarrow radial gradients in experiment expected due to external liquid cooling



#### Adsorption and Desorption



## 3I INSTRUM

## Regeneration / PSA



5% CO<sub>2</sub> 95% N<sub>2</sub> at 40°C, 5 bar, 2000 ml/min on D 55/1.5

#### Model after Fitting

- Isotherms (MCSIPS)
- Kinetic parameter (k<sub>LDF</sub>)
- Heat Transfer Parameter

→ Model can consider slower Desorption due to curved isotherm Parameter from Experiment and general requirements:

- Adsorption time 5.78 min
- Adsorption pressure 5 bar
- Feed Flow 2000 ml/min
- Purge Flow 500 ml/min pure N<sub>2</sub>
- Desorption in counter current flow
- Max. CO<sub>2</sub> content in product 1%

**Question concerning:** 

1) Desorption pressure?

## Regeneration / PSA



- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles



#### Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N<sub>2</sub>
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

Calculations with  $p_{DES}$ = 1 bar

Predictions by modeling:

Regeneration conditions not strong enough  $\rightarrow$  CO<sub>2</sub> impurity in effluent flow increases from cycle to cycle to ~ 3 %



## **Regeneration / PSA**



- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles



## 3P NSTRUMENTS

#### Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N<sub>2</sub>
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

Calculations with  $p_{DES}$ = 1 bar

Predictions by modeling:

Regeneration conditions not strong enough  $\rightarrow$  CO<sub>2</sub> impurity in effluent flow increases from cycle to cycle to ~ 3 %

Predictions were confirmed by experiment

## **Regeneration / VPSA**



#### Cycle times for modeling:

- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles



#### Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N<sub>2</sub>
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

Calculations with  $p_{DES}$ = 0.5 bar

Predictions by modeling:

 Regeneration conditions good enough
 → CO<sub>2</sub> impurity in effluent flow increases from cycle to cycle, but still below target (<1%)</li>

## **Regeneration / VPSA**



#### Cycle times for modeling:

- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles



#### Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N<sub>2</sub>
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

Calculations with  $p_{DES}$ = 0.5 bar

Predictions by modeling:

 Regeneration conditions good enough
 → CO<sub>2</sub> impurity in effluent flow increases from cycle to cycle, but still below target (<1%)</li>

Predictions were confirmed by experiment

## **Regeneration / VPSA**



#### Cycle times for modeling:

- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles



#### Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N<sub>2</sub>
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

#### But: modeling divers from experiment!

- Cycle Steps in modeling strong simplified
- Variations experiment from model mainly in desorption part
  - → Modeling can help to reduce experimental effort
    → final evaluation only by experiment!

## C<sub>3</sub>H<sub>8</sub> removal from CH<sub>4</sub> (partial pressure range 0.01 bar and 0.50 bar)

Selection of activated carbon with different BET-Surfaces, but from same raw material

- AC 1 BET ~1800 m<sup>2</sup>/g
- AC 2 BET ~1300 m<sup>2</sup>/g



Often AC with higher BET will be selected by user which is not always the best decision!

 $\rightarrow$  according to isotherms AC 2 is better for low C<sub>3</sub>H<sub>8</sub> concentrations

 $\rightarrow$  for high C<sub>3</sub>H<sub>8</sub> concentrations AC 1 is better

## $C_3H_8$ removal from $CH_4$ (partial pressure range 0.01 bar and 0.50 bar)

Selection of activated carbon with different BET-Surfaces, but from same raw material

- AC 1 BET ~1800 m<sup>2</sup>/g
- AC 2 BET ~1300 m<sup>2</sup>/g



#### Breakthrough experiments and simulations very sensitive for low concentrations!

 $\rightarrow$  Observations made from isotherms were confirmed by dynamic experiments and calculations

## **Calculation of Constant Pattern Profiles**

For favored isotherms (TYP I-Isotherms) a Constant Pattern Behavior can occur

- Shape of breakthrough will not change for longer elongation times or adsorber heights, respectively
- Based on compensation of flattening and rising effects
- Height for Constant Pattern = FKT(Shape of Isotherm, Dispersion, Kinetics)



5% CO<sub>2</sub> in He at 40°C, 5 bar, 1000 ml/min on D 55/1.5

Experiment carried out at 20 cm, simulations were performed for different heights

- $\rightarrow$  Slopes at C/C<sub>0</sub>=0.5 were used to evaluate steepness of breakthrough curves
- $\rightarrow$  Constant pattern Behavior can be expect above 20 cm bed height





#### Limitations of simplified model – Water on Activated Carbon

Difficult to calculate breakthrough due to shape of isotherm, good isotherm model fit necessary!



1 bar, 4000 ml/min on D 55/1.5

- Isotherm fit with an empiric Dualsite Langmuir-SIPS equation
- Heat of adsorption 60 kJ/mol
- Heat for condensation 40.8 kJ/mol

- $\rightarrow$  Description of the curve qualitatively possible
- ightarrow Isothermal calculation failed for this example
- $\rightarrow$  Stronger deviations for condensation part

# **5.** Conclusions

- Gas-Flow Methods allow Characterization under **application-related conditions**
- Information regarding Kinetics can be obtained by fitting of mass- and energy balances
- Modeling can be helpful for interpretation dynamic sorption processes
- PSA process design can supported by Simulations
- Modeling can lead to **considerable decrease of experimental effort**
- Simulation model can used for investigations of Constant Pattern Behavior

44



**Thank You!** 





15