

Investigation of Mixed Gas Sorption in Lab-Scale – Experiment and Evaluation

Dr. Andreas Möller

Christian Reichenbach, Robert Eschrich

3P INSTRUMENTS GmbH & Co. KG

2018-06-14

Adsorption Summer School

Technical Necessity:

Application of Porous Materials as Adsorbents

Fine cleaning of Gases (i.e. purification of H_2 , natural gas, bio methane...)

Waste air treatment, respiratory protection, solvent recovery, removal of pollutants...)

Gas separation (i.e. Air separation...)

Modern and effective materials should have high sorption capacities, high selectivities, and a good kinetic performance.

For such applications, one must consider gas mixtures and their sorption properties in any case.

Characterization of Adsorbents

Characterization of Adsorbents

Why are Textural Properties not enough...?

Textural Properties of Adsorbents:

- BET-Surface
- Pore Size Distribution
- Micropore Volume

Textural properties allow only limited qualitative statements regarding:

- expected sorption capacity (Micropore Volume)
- rough assessment of general sorption properties from Pore Size Distributuion

Textural properties do not allow quantitative statements regarding:

- sorption affinity
- selectivity
- no sufficient information of surface chemistry

Selectivity and Separation factor

Often different definition of selectivity (separation factor)!

Thermodynamic selectivity and limit of selectivity (p \rightarrow 0) α

Difference of shape of isotherms and of loadings important [1]

$$\alpha_{CO_2,CH_4} = \frac{Y_{CH_4}}{Y_{CO_2}} \frac{X_{CO_2}}{X_{CH_4}} \qquad \alpha_{CO_2,CH_4} (p \to 0) = \frac{H_{CO_2}}{H_{CH_4}}$$

Y... mole ratio in gas phase

X... mole ratio in adsorbed phase

H... Henry constants

Sorbent selection parameter of Rege and Yang [2]

$$S = \frac{\Delta q_{CO_2}}{\Delta q_{CH_4}} \alpha_{CO_2, CH_4}$$

 Δq_{\cdots} difference in loading between adsorption and desorption

Kinetic separation faktor $\boldsymbol{\beta}$

Difference of sorption rates important [3]

$$\beta_{CO_2,CH_4} = \frac{H_{CO_2}}{H_{CH_4}} \cdot \sqrt{\frac{D_{CO_2}}{D_{CH_4}}} \quad \text{H... Henry constants}$$

$$D... \text{ Diffusion coefficients}$$

[1] R.T. Yang, Gas separation by adsorption processes, Imperial College Press, London, **1987**

[2] S.U. Rege, R.T. Yang, Sep. Sci. & Technol., 2011, 36, 3355-3365

[3] D.M. Ruthven, S. Farooq, K.S. Knaebel, *Pressure Swing Adsorption*, Wiley-Verlag, New York **1994**.

Dynamic orption

Dependence of partial and total adsorption amounts

- - partial loadings, - total loading

General:

$$n_{CO_2,CH_4,total} = FKT(Y_{CO_2}, Y_{CH_4}, p)$$

Investigation along:

THE READ LINE – Case A $n_{CO_2,CH_4,total} (p = const.) = FKT(Y_{CO_2}, Y_{CH_4})$

THE BLUE LINE – Case B $n_{CO_2,CH_4,total}(Y_{CO_2}, Y_{CH_4} = const.) = FKT(p)$

Typical presentation of sorption capacities for binary mixtures

Case B – variable pressure

p=const. (1 bar), CO_2 , CH_4 on D55-1.5

Y=const. (50:50), CO₂,CH₄ on D55-1.5

X-Y-Plot with statement to the composition of adsorbed phase at constant pressure

N-p-Plot with statement to the composition of amount of adsorbed at constant composition of the gas phase

Typical presentation of sorption capacities for binary mixtures

p=const. (1 bar), CO_2 , CH_4 on D55-1.5

Y=const. (50:50), CO₂, CH₄ on D55-1.5

www.dynamicsorption.com

Dynamic orption

Case B – variable pressure

Dynamic orption

Relationship between loading – mole fraction – selectivity

- 1. Calculation of **mole fractions of adsorbed phase** from partial loading
- 2. Calculation of **mole fraction of gas phase** from partial pressures
- 3. Calculation of selectivity
- 4. Check **plausibility with** help of **limit for selectivity** (for IAST-Calculations)

$$X_{CO_2} = \frac{n_{CO_2}}{n_{CO_2} + n_{CH_4}} \qquad Y_{CO_2} = \frac{p_{CO_2}}{p_{CO_2} + p_{CH_4}}$$
$$\alpha_{CO_2, CH_4} = \frac{Y_{CH_4}}{Y} \frac{X_{CO_2}}{Y} \qquad \alpha_{CO_2, CH_4} (p \to 0) = \frac{H_{CO_2}}{H}$$

 $Y_{CO_2} X_{CH_4}$

50% CO_2 ,50% CH_4 on NaMSX, IAST with Toth

Limit of selectivity can be used to check the results of IAST-Calculations (only for models with Henry range)

 H_{CH}

Often Limit of selectivity do not reflect the selectivity for the real separation process, therefore a single consideration is not enough

- Multi Component-DSLAI (MCDSLAI)
- IAST with DSLAI

$$q_i = q_{m,i} \frac{(b_i p_i)^{x_i}}{1 + \sum (b_j p_j)^{x_j}} \quad \text{MCSIPS}$$

$$\frac{A \cdot \pi}{RT} = \int_{0}^{p_{i0}} \frac{n}{p} dp = const.$$

 $n = Isotherm(p_{io})$

[1] R.T. Yang, *Gas Separation by Adsorption Processes*, Imperial College Press, **1987**

- [2] A.L. Myers, J.M. Prausnitz, AIChe Journal, **1965**, 11, 129
- [3] T.W. Cochran, R.L. Kabel, R.P. Danner, AIChe Journal, 31, 1985, 12, 2075

Mixture Equilibria - Models

General Solution Algorithm for IAST

Nonlinear Equation System can be solved by Newton Algorithm

Formulation of equation system

$$\sum_{i=1}^{n} X_{i} = 1$$

$$\sum_{i=1}^{n} Y_{i} = 1$$

$$\sum_{i=1}^{p_{i}^{0}} \frac{n_{i}(p)}{p} dp - \frac{\pi A}{RT} = 0$$

Build up of Jacobian matrix J

 $\begin{pmatrix} \frac{\partial f_1}{\partial p_1^0} & \frac{\partial f_1}{\partial p_2^0} & \cdot & \frac{\partial f_1}{\partial \pi} \\ \cdot & \cdot & \cdot & \cdot \\ \frac{\partial f_N}{\partial p_1^0} & \cdot & \cdot & \frac{\partial f_N}{\partial \pi} \end{pmatrix} \bullet$

Define starting Values (as vector) Calculate of negative Functions (as vector)

Dynamic orption

Most Important Problem: Finding of suitable starting values for convergence!

Hint:

Testing the solution by inserting into equation system

Solving of lin. Equation system by Gaussian elimination $J(p_i^0, \pi) \cdot \Delta(p_i^0, \pi) = -FKTN(p_i^0, \pi)$

Calculate a new vector

 $p_{i,N+1}^0, \pi_{N+1} = p_{i,N}^0, \pi_N + \Delta(p_i^0, \pi)$

The whole procedure will be repeated till Δ

 $\left|\Delta\left(p_{i,N}^{0},\pi_{N}
ight)
ight|<arepsilon$

Example with Langmuir (3 Components)

Formulation of equation system and elimination of *X_i*

$$\frac{Y_{1} \cdot p}{p_{1}^{0}} + \frac{Y_{2} \cdot p}{p_{2}^{0}} + \frac{Y_{3} \cdot p}{p_{3}^{0}} - 1 = 0$$

$$\int \frac{n_{m1} \cdot b_{1}}{1 + b_{1} \cdot p_{1}^{0}} - \Pi = 0$$

$$\int \frac{n_{m2} \cdot b_{2}}{1 + b_{2} \cdot p_{2}^{0}} - \Pi = 0$$

$$\int \frac{n_{m3} \cdot b_{3}}{1 + b_{3} \cdot p_{3}^{0}} - \Pi = 0$$

$$\begin{pmatrix} \frac{Y_{1} \cdot p}{(p_{1}^{0})^{2}} & \frac{Y_{2} \cdot p}{(p_{2}^{0})^{2}} & \frac{Y_{3} \cdot p}{(p_{3}^{0})^{2}} & 0 \\ \frac{n_{m1} \cdot b_{1}}{1 + b_{1} \cdot p_{1}^{0}} & 0 & 0 & -1 \\ 0 & \frac{n_{m2} \cdot b_{2}}{1 + b_{2} \cdot p_{2}^{0}} & 0 & -1 \\ 0 & 0 & \frac{n_{m3} \cdot b_{3}}{1 + b_{3} \cdot p_{3}^{0}} & -1 \end{pmatrix}$$

Build up of

Jacobian matrix J

Define starting Values (as vector)

Calculate of negative Functions (as vector)

Dynamic orption

Hint:

In case of Langmuir isotherm an analytical solution exists:

$$p \cdot \left(\frac{Y_{1}}{\exp\left(\frac{\Pi}{n_{m1}}\right) - 1} + \frac{Y_{2}}{\exp\left(\frac{\Pi}{n_{m2}}\right) - 1} + \frac{Y_{3}}{\exp\left(\frac{\Pi}{n_{m3}}\right) - 1}\right) - 1 = 0$$

www.dynamicsorption.com

Solving of lin. Equation system by Gaussian elimination $J(p_i^0, \pi) \cdot \Delta(p_i^0, \pi) = -FKTN(p_i^0, \pi)$

 $p_{i,N+1}^{0}, \pi_{N+1} = p_{i,N}^{0}, \pi_{N} + \Delta (p_{i}^{0}, \pi)$ The whole procedure will be repeated till $|\Delta (p_{i,N}^{0}, \pi_{N})| < \varepsilon$

Mixture Equilibria - Calculations

Calculations of mixture data with **3P-Sim** – Recommendations for pure components

- 1. Fitting of pure component data at same temperature for all components
- 2. All data as table pressure / bar (mbar) and adsorbed amount / mmol g⁻¹
- 3. All components must be fitted with same isotherm model

TYP I: Langmuir, SIPS, Toth, DSLangmuir, DSLangmuirSIPS

Typ II: (Freundlich)

Typ IV, V: DSLangmuirSIPS, (DSLangmuir), (SIPS)

IUPAC Technical Report, Pure Appl. Chem. 2015; 87(9-10), 1051-1069

www.dynamicsorption.com

Mixture Equilibria - Calculations

Calculations of mixture data with **3P-Sim** – fitting of pure components

Example: CO_2 , CH_4 on NaMSX at 40°C

Mixture Equilibria - Calculations

Calculations of mixture data with **3P-Sim** – calculation of mixture data

The selected mixture model must include the pure component isotherm model!

i.e.: with SIPS only the Multicomponent-SIPS approach is available

Dynamic Orption

17

Static-volumetric Method

- Sorption in closed chamber
- Measurement of pressure drop
- Pure component isotherms, mixed gas sorption hard to realize
 - Standard characterization (BET, Pore volume, pure component isotherms)

Dynamic Method

- Sorption in an open system at constant pressure
- Time resolved measurement of effluent gas composition
- Mainly for mixed gas sorption, pure component data only with some approaches possible
- Technical processes in "Labscale"
 - Investigations to technical relevant parameters (selectivity, sorption kinetic, regenerability, cycle stability ...)

Dynamic Orption

iSorb HP 1

<mark>mix</mark>Sorb L

Measurement Techniques – Static Volumetry

Dynamic orption

- > Dosing and **mixing of a predefined gas mixture** in V1 by circulation pump
- Switch to adsorption chamber V2 and continuous mixing by circulation pump
- Recording of pressure drop and **analysis of gas phase** after achievement of equilibrium
- Calculation of partial loading based on mass balance

\rightarrow Precalculations necessary for a desired equilibrium point

Dynamic orption

Measurement Techniques – Headspace

Headspace Method (HS):

- Special case of a static-volumetric setup
- Higher sample throughput as classical volumetry
- Primarily for vapor mixtures suitable

Principle:

- ➢ Regeneration under N₂ at 150 °C (AC)
- Sometimes preloading with component 1 (i.e. H_2O)
- Loading of HS-Vial with sample and VOC (with μl-Syringe)
- > Equilibration for several days in tempered bath
- Analysis of gas phase via GC and performing of a mass balance

\rightarrow Precalculations necessary for a desired equilibrium point

M.J.G.Linders et al., *AIChE Journal*, **2001**, *47*(8), 1885-1892

Headspace GC at INC e.V.

Vials

20

Measurement Techniques – Dynamic Setup

Flow plot of a setup for the dynamic method

- Flow through the regenerated sample with a predefined gas mixture
- Measurement of data at a specified pressure and gas composition -> Advantage over static volumetry, no precalculations necessary

A.Möller et al., Adsorption, 2016, 23(2-3), 197-209

Measurement Techniques – Overview

Static-Volumetric	Headspace Method	Dynamic Method
Closed Chamber	Closed Chamber	Open System
no carrier gas necessary	no carrier gas necessary	carrier gas necessary, depending on the routine
Suitable for gas mixtures and vapors	Mainly for vapors	Suitable for gas mixtures and vapors
Experimentally complex	Precalculations necessary	No precalculations necessary
Precalculations necessary	Sequenced experiments hard to perform	Sequenced experiments easy to perform
Sequenced experiments hard to perform		Experiments along the "Lines" possible

Measurement Techniques – Overview

Static-Volumetric	Headspace Method	Dynamic Method
Closed Chamber	Closed Chamber	> Open System
no carrier gas necessary	no carrier gas necessary	carrier gas necessary, depending on the routine
Suitable for gas mixtures and vapors	Mainly for vapors	Suitable for gas mixtures and vapors
Experimentally complex	Precalculations necessary	No precalculations necessary
Precalculations necessary	Sequenced experiments hard to perform	Sequenced experiments easy to perform
Sequenced experiments hard to perform		Experiments along the "Lines" possible

Balancing of breakthrough experiments

• Widely used approach and simplification for high diluted systems:

 $\dot{V}_{Out}(t) = \dot{V}_{In}(t) = const.$

Measurement Techniques – Dynamic Method

time

- binary mixture:
 - CO₂/He (non-adsorbable carrier gas)
 - \rightarrow Pure component equilibria
 - CO₂/CH₄ (adsorbable carrier gas)
 - \rightarrow Preloading of sample with pure CH₄
 - → Incomplete Determination of the system (evaluation mostly simple)
 - \rightarrow Partial loading for CO₂ (mixture sorption data)

time

• ternary mixture:

 $CO_2/CH_4/He$ (non-adsorbable carrier gas)

Displacement of less adsorbed component

- → Partial Desorption, Role-Up Effects
- \rightarrow Complete Determination (evaluation complex)
- CO₂/CH₄/N₂ (adsorbable carrier gas)
- \rightarrow Preloading of sample with pure N₂
- \rightarrow Partial loading for CO₂ and CH₄
- → Incomplete ternary mixture data

Dynamic (orption

Calculation of mixture data desired (Y/N)?

 \rightarrow Pure component isotherms necessary

- ➢ Is a complete determination of the system desired?
 - \rightarrow determination of all partial loadings, diluting with Helium-carrier gas (Y/N)
- > Definition of total flow, concentration, measurement temperature etc.

→ Sample must be under "thermodynamic control" (always)

- > Depending on **concentration range** one should consider:
 - \rightarrow Calibration of suitable analytic technique (always)
 - → Check if any approach is valid, i.e. constant gas velocity ...(always)
- Sample preparation and definition of preparation conditions

→ Temperature, carrier gas (always)

- Build up of a measurement routine
 - → pressurization, Helium or Adsorptive 1 (Helium for complete determination)
- Evaluation of the experiment

- Calculation of mixture data desired (Y/N)?
 - \rightarrow Pure component isotherms necessary
- Is a complete determination of the system desired?
 - → determination of all partial loadings, diluting with Helium-carrier gas (Y/N)
- > Definition of total flow, concentration, measurement temperature etc.
 - → Sample must be under "thermodynamic control" (always)
- > Depending on **concentration range** one should consider:
 - ightarrow Calibration of suitable analytic technique (always)
 - → Check if any approach is valid, i.e. constant gas velocity ...(always)
- Sample preparation and definition of preparation conditions
 - → Temperature, carrier gas (always)
- Build up of a measurement routine
 - → pressurization, Helium or Adsorptive 1 (Helium for complete determination)
- Evaluation of the experiment

www.dynamicsorption.com

- Calculation of mixture data desired (Y/N)?
 - ightarrow Pure component isotherms necessary
- ➢ Is a complete determination of the system desired?
 - → determination of all partial loadings, diluting with Helium-carrier gas (Y/N)
- > Definition of total flow, concentration, measurement temperature etc.
 - → Sample must be under "thermodynamic control" (always)
- > Depending on **concentration range** one should consider:
 - ightarrow Calibration of suitable analytic technique (always)
 - \rightarrow Check if any approach is valid, i.e. constant gas velocity ...(always)
- Sample preparation and definition of preparation conditions
 - → Temperature, carrier gas (always)
- Build up of a measurement routine
 - → pressurization, Helium or Adsorptive 1 (Helium for complete determination)
- Evaluation of the experiment

Definition of

measurement

task

Definition of

measurement

conditions

Selection and

calibration of

analytics

- Calculation of mixture data desired (Y/N)?
 - \rightarrow Pure component isotherms necessary
- Is a complete determination of the system desired?
 - → determination of all partial loadings, diluting with Helium-carrier gas (Y/N)
- > Definition of total flow, concentration, measurement temperature etc.
 - → Sample must be under "thermodynamic control" (always)
- > Depending on **concentration range** one should consider:
 - \rightarrow Calibration of suitable analytic technique (always)
 - \rightarrow Check if any approach is valid, i.e. constant gas velocity ...(always)
- Sample preparation and definition of preparation conditions
 - → Temperature, carrier gas (always)
- Build up of a measurement routine
 - → pressurization, Helium or Adsorptive 1 (Helium for complete determination)
- Evaluation of the experiment

Example of a Measurement Routine

Task: Investigation of a binary system

Activated Carbon, $CO_2(25\%)$, $CH_4(75\%)$, complete determination at 5 bar

- 1. Weighting the sample and sample preparation at 120°C, He-flow 200 ml min⁻¹ (STP)
- **2.** Definition of partial pressures: 1,25 bar CO_2 ; 3,75 bar CH_4 ; 5 bar He; $\Sigma 10$ bar
- **3.** Gas flows: 11 min⁻¹ (STP) He, 0,75 l min⁻¹ (STP) CH₄, 0,25 l min⁻¹ (STP) CO₂
- 4. Pressurization with Helium up to 10 bar
- 5. Start of measurement by **simultaneous dosing of CO₂ and CH₄** in Helium
- 6. Recording of effluent gas composition via MS (all components!)
- 7. After breakthrough, regeneration of sample for determination of activated mass

Example of a Measurement Routine

Task: Investigation of a binary system

Activated Carbon, $CO_2(25\%)$, $CH_4(75\%)$, complete determination at 5 bar

Result:

Breakthrough curve with "Role-Up" Effect

- Includes all partial loadings
- \blacktriangleright Reference on p_{CO2}=0,25 bar and
 - P_{CH4}=3,75 bar
- > Mole fraction: $y_{CO2}=0,25$; $y_{CH4}=0,75$
- Helium will not be considered!

Integration of areas:

 \succ n(CO₂); n(CH₄); n(total); α

Dynamic orption

An Example for a Complete Determined System

Dynamic orption

5% CO₂ 15% CH₄ in He at 20°C, 5 bar, 2500 ml min⁻¹ (STP) on D 55/1.5

An Example for an Incomplete Determined System

Dynamic orption

5% CO₂ 95% N₂ at 40°C, 5 bar, 2000 ml min⁻¹ on D 55/1.5

Measurement Techniques – Dynamic Method

Dynamic orption

Sequence of several breakthrough curves on Activated Carbon D 55-1.5

Conditions:

- 20 °C, 2 L min⁻¹
- 10 bar (pressurization with N_2)
- Concentrations: 5 % CO_2 80 % CO_2 in N_2

Procedure:

- Start further breakthroughs after equilibrium before
- Integration and summation results in partial loading data of CO₂
- Volume ratio and total pressure defines the partial pressure of CO₂
- \rightarrow Mixed isotherm data of CO₂ in N₂

Measured partial loading data for CO₂ on Activated Carbon D 55-1.5 at 10 bar

- Dynamic measured data (red)
- IAST-Model (Ideal Adsorbed Solution Theory) based on pure component isotherms (lines)
- Mixture of CO₂ and N₂ shows ideal behavior on AC

Determination of partial loading data of CO_2 on AC D 55-1.5 by performing sequentially experiments along constant total pressure.

$$n_{CO_2,N_2,total}(p=const.) = FKT(Y_{CO_2},Y_{N_2})$$

Measurement Techniques – Dynamic Method

Dynamic orption

Sequence of several breakthrough curves on Activated Carbon D 55-1.5

CO₂/He

 CO_2/N_2

- Assumption of **non-adsorbable Gas, i.e. Helium** as carrier gas will lead to pure component equilibria.
- Other, **adsorbable gases** results in mixture sorption data.

100

80

60

40

20

0

6000

time-on-stream t / s

3000

9000

12000

mole fraction $y(CO_2) / \%$

Vapor Mixture Measurement – Dynamic Method

Dynamic orption

1% EtOH 2,5% H_2O (approx. 80% RH) in N_2 at 25°C, 1 bar, 4000 ml/min on NaMSX

Vapor Mixture Measurement – Dynamic Method

Dynamic orption

1% EtOH 2,5% H_2O (approx. 80% RH) in N_2 at 25°C, 1 bar, 4000 ml/min on D 55/1.5

Comparable Measurements of Mixture Sorption

Dynamic orption

Statements on selectivity also possible without modeling from pure component data

Determination of sorption capacities and selectivities, recording of kinetic

What can we do with such data?

- Relevance for materials / science and production
 - Assessment of porous materials
 - R&D of tailor made materials for certain separation issues
 - Evaluation of Influence of some secondary components

Relevance for engineering / Process design

- Modeling and Calculation of fixed bed adsorbers
- Determination of Kinetics (Linear driving force constants)
- Calculation of breakthrough curves, upscaling by modeling
- Calculation of PSA and TSA processes

Zeolite for gas purification Source: www.cwk-bk.de

Process gas purification plant source www.silica.de

What can we do with such data?

- Relevance for materials / science and production
 - Assessment of porous materials
 - R&D of tailor made materials for certain separation issues
 - Evaluation of Influence of some secondary components

Relevance for engineering / Process design

- Modeling and Calculation of fixed bed adsorbers
- > Determination of Kinetics (Linear driving force constants)
- Calculation of breakthrough curves, upscaling by modeling
- Calculation of PSA and TSA processes

Zeolite for gas purification Source: www.cwk-bk.de

Process gas purification plant source www.silica.de

Modeling – necessary Input Parameters

Cycle duration, pressure range...

Red: properties of adsorbent/adsorptive system

Black: properties of adsorber and adsorber wall

Modeling of Breakthrough Curves

Kinetic considerations - Mass Transfer coefficient k_{LDF}

Dynamic Orption

43

Modeling – Mass and Energy Balances

- * D.M. Ruthven, Principles of Adsorption (1984)
- * M.S. Shafeeyan et. al, Chem. Eng. Res. Des. 92 (2014)

Equation for velocity / overall mass balance (isothermal)

$$\frac{\partial u}{\partial z} + \underbrace{\frac{RT}{p}\rho_{part} \frac{1-\varepsilon}{\varepsilon} \sum_{i=1}^{n} \frac{1}{M_{i}} \frac{\partial \overline{q}_{i}}{\partial t}}_{i=1} + \underbrace{\frac{1}{p} \frac{\partial p}{\partial t}}_{i=1} = 0$$

Change by adsorption Change by compression

Working with the model – Example I

Dynamic orption

Working with the model – Example I

Replacement effects – Temperature profiles

Use of integral heat of adsorption with Sips model (from isotherms):

 $q_{s,i} = q_{\max,i} \cdot \frac{(K_i \cdot c_i)^{t_i}}{1 + \sum_{j=1}^n (K_j \cdot c_j)^{t_j}}$ $K_i = K_{i,0} \cdot \exp\left(\frac{Q}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)$ $q_{\max,i} = q_{\max,i,0} \cdot \exp\left(\chi_i\left(1 - \frac{T}{T_0}\right)\right)$

- $t_i = t_{i,0} + \alpha_i \left(1 \frac{T_0}{T} \right)$
- Q (equivalent to $-\Delta H_{\Theta=0.5}$)
- Q _{CO2}: 15.9 kJ mol⁻¹
- Q _{CH4}: 11.9 kJ mol⁻¹

Fitting Heat Transfer Coeff.

- $h_w : \sim 30 \text{ W m}^{-2} \text{ K}^{-1}$ (Gas, Fixed Bed/Wall)
- $U_g^{"}$: ~ 400 W m⁻² K⁻¹ (Wall/Liquid)

Input Q in energy

time / min 5% CO₂ 15% CH₄ in He at 20°C, 5 bar, 2500 ml/min on D 55/1.5

- CH₄ induced higher temperature effect
- Model can describe temperature profiles qualitatively
- Underestimation of temperature peaks
- Experiment shows mostly sharper temperature profiles
 - ightarrow differences due to simplification of no radial gradients
 - ightarrow radial gradients in experiment expected due to external liquid cooling

Scope of Simulation

Example: CO₂ Adsorption on D55/1.5 in N₂-Carrier Gas

Observations:

- 1) Desorption curve flatter than Adsorption curve
- 2) Desorption time higher than Adsorption time

3) Adsorption time 5.78 min (c_{out} < 0.2 %)

Questions concerning:

1) Kinetic parameter (k_{LDF})

2) Total pressure during each step

3) Adsorption/Desorption times

4) Purge flow during Desorption

Adsorption: 5% CO₂ in N₂ at 40°C, 5 bar, 2000 ml/min on D 55/1.5

Desorption: Purging with 2000 ml/min N_2 at 40°C, 5 bar

Regeneration / PSA

5% CO_2 95% N_2 at 40°C, 5 bar, 2000 ml/min on D 55/1.5

Model after Fitting

- Isotherms (MCSIPS)
- Kinetic parameter (k_{LDF})
- Heat Transfer Parameter

→ Model can consider slower Desorption due to curved isotherm

Parameter from Experiment:

- Adsorption time 5.78 min
- Adsorption pressure 5 bar
- Feed Flow 2000 ml/min
- Purge Flow 2000 ml/min pure N₂

General Requirements for PSA:

- Purge Flow 500 ml/min pure N₂
- Desorption in counter current flow
- Max. CO₂ content in product 1%

Question concerning: 1) Desorption pressure?

Regeneration / PSA

Cycle times for modeling:

- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles

Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N₂
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

Calculations with p_{DES} = 1 bar

Predictions by modeling:

Regeneration conditions not strong enough \rightarrow CO₂ impurity in effluent flow increases from cycle to cycle to ~ 3 %

Regeneration / PSA

Cycle times for modeling:

- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles

Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N₂
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

Calculations with p_{DES} = 1 bar

Predictions by modeling:

Regeneration conditions not strong enough \rightarrow CO₂ impurity in effluent flow increases from cycle to cycle to ~ 3 %

Predictions were confirmed by experiment

Regeneration / VPSA

Cycle times for modeling:

- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles

Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N₂
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

Calculations with p_{DES} = 0.5 bar

Predictions by modeling:

 Regeneration conditions good enough
 → CO₂ impurity in effluent flow increases from cycle to cycle, but still below target (<1%)

Regeneration / VPSA

Cycle times for modeling:

- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles

Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N₂
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

Calculations with p_{DES} = 0.5 bar

Predictions by modeling:

Regeneration conditions good enough → CO₂ impurity in effluent flow increases from cycle to cycle, but still below target (<1%)

Predictions were confirmed by experiment

Regeneration / VPSA

Cycle times for modeling:

- Adsorption time 5.78 min
- Desorption time 5.03 min
- Calculating 5 Cycles

Cycle times for Experiment:

- Adsorption time 5.78 min @ 5 bar
- Blow Down time ~ 0.25 min
- Desorption time 4.75 min
- Pressurization to 4.6 bar with N₂
- Pressurization from 4.6 bar to 5 bar with Feed
- Measurement of 5 cycles

But: modeling divers from experiment!

- Cycle Steps in modeling strong simplified
- Variations experiment from model mainly in desorption part
 - → Modeling can help to reduce experimental effort
 → final evaluation only by experiment!

Working with the model – Example III

C₃H₈ removal from CH₄ (partial pressure range 0.01 bar and 0.50 bar)

Selection of activated carbon with different BET-Surfaces, but from same raw material

- AC 1 BET ~1800 m²/g
- AC 2 BET ~1300 m²/g

Often AC with higher BET will be selected by user which is not always the best decision!

- \rightarrow according to isotherms AC 2 is better for low C₃H₈ concentrations
- \rightarrow for high C₃H₈ concentrations AC 1 is better

Working with the model – Example III

C₃H₈ removal from CH₄ (partial pressure range 0.01 bar and 0.50 bar)

Selection of activated carbon with different BET-Surfaces, but from same raw material

- AC 1 BET ~1800 m²/g
- AC 2 BET ~1300 m²/g

Breakthrough experiments and simulations very sensitive for low concentrations!

 \rightarrow Observations made from isotherms were confirmed by dynamic experiments and calculations

Working with the model – Example IV

Calculation of Constant Pattern Profiles

For favored isotherms (Type I-Isotherms) a Constant Pattern Behavior can occur

- Shape of breakthrough will not change for longer elongation times or adsorber heights, respectively
- Based on compensation of flattening and rising effects
- Height for Constant Pattern = f(Shape of Isotherm, Dispersion, Kinetics)

5% CO₂ in He at 40°C, 5 bar, 1000 ml/min on D 55/1.5

Experiment carried out at 20 cm, simulations were performed for different heights

- \rightarrow Slopes at C/C₀=0.5 were used to evaluate steepness of breakthrough curves
- \rightarrow Constant Pattern Behavior can be expect above 20 cm bed height

Conclusions

- > Equilibria of mixtures and selectivities are important for applications
 - > Knowledge of such data are highly valuable and of great interest
- however much more difficult to measure
 - > There is a lack of data in literature
- Mixture equilibria can not calculated by textural properties but partial predictive from pure component isotherms based on classical thermodynamic Models.
- Mixture Models necessary for calculations of dynamic processes

Thank you for your attention!

Please visit our website for further information

www.dynamicsorption.com

via E-Mail on

info@3p-instruments.com

You are invited! LEIPZIGER SYMPOSIUM on dynamic sorption

2019

»Advanced Sorbent Materials on the Way to Application«

May 14th 2019 in Leipzig (Germany) www.dynamicsorption.com/symposium