Dynamic orption

Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation

Dr. Robert Eschrich Quantachrome GmbH & Co. KG

2018-04-17

Leipziger Symposium on Dynamic Sorption 2018

sorption heat and energy storage

www.dynamicsorption.com

Dynamic orption

Outline

- **1. Breakthrough Curve Introduction**
- 2. The mixSorb L with Vapor Option
- 3. Breakthrough Curves of Vapors
 - I. Water Breakthrough Curves on Zeolite, Silica Gel Regenerability and Heat Output
 - II. Toluene Breakthrough Curve on Activates Carbon
 - III. Ethanol/water Mixture Adsorption
 - on Activates Carbon

4. Modelling

- I. Simulating Water Breakthrough Curves
- II. Simulating Ethanol Breakthrough Curves

Static Volumetric Measurements

- Sorption takes place in enclosed chamber
- Pressure is recorded over time
- Pure Gases only

Breakthrough Experiment

- Sorption takes place in open system
- Pressure is constant
- Gas Mixtures only
- Outlet composition is recorded over time

Breakthrough Curves

- Not all Gas Flow Experiments are Breakthrough Experiments!
- Requirement: Fixed Adsorber Bed
 → gas must not pass the sample without interaction!

- What is the result of a breakthrough experiment?
 - ✓ **Time** until 5 %, 50 % ,... of breakthrough is the **cycle or production time**
 - ✓ Integration of the full curve gives saturation capacity of a gas on the adsorbent (equilibrium)
 - ✓ Integration until cycle time gives technically usable sorption capacity
 - ✓ Shape of the curve contains information about kinetics/mass transfer

Dynamic (orption

Different Scales

Dynamic orption

5

Resulting Curves

- 40 °C, 2 L min⁻¹
- 5 bar (pressurization with N_2)
- Inlet compositions: 5 % CO₂ in N₂
- Temperature Maxima Decrease in Flow Direction
 → Increasing Dispersion
- Area under Temperature Curves increases in Flow Direction
 - ightarrow Transfer of heat through gas flow

Dynamic orption

6

Calculating Loadings

$$n_{\text{adsorbed}} = \int \dot{n}_{\text{in}}(t) dt - \int \dot{n}_{\text{out}}(t) dt$$

$$n_{\text{adsorbed}} = \int \dot{V}_{\text{in}}(t) \frac{y_{\text{in}}(t)}{V_{\text{m}}} dt - \int \dot{V}_{\text{out}}(t) \frac{y_{\text{out}}(t)}{V_{\text{m}}} dt$$

Saturation Capacity dq = 0.611 mmol g⁻¹

Integrating over the Curve to e.g. 1 % Breakthrough

Technically Usable Sorption Capacity dq = 0.445 mmol g⁻¹ Dynamic orption

2. The mixSorb L Vapor Option

mixSorb L

- Fully automated Breakthrough Analyzer
- Integrated Gas Mixing Including Vapors
- Up to 40 L/min Gas Flow, up to **10 bar**
- Up to 4 mass flow controllers (MFCs)
- Up to **2 Evaporators**, each capable to supply vapor mixtures

- Monitoring of gas composition by TCD at the Outlet or Bypass
- You can attach any additional Analytical Device (e.g. **Mass Spec**) at the **sample port**
- **3P-SIM** Simulation Software

I. Breakthrough Curves of H₂O

Drying of process gases

 \rightarrow Important to remove Water and CO2 in Air before Cryogenic Air Separation

ightarrow Water would plug the piping by freezing.

 \rightarrow Air separation with Pressure Swing Adsorption (PSA) on Zeolites

ightarrow Water has strong affinity to surface

• Energy Storage

→ Adsorption of water vapor → releasing heat of adsorption. Control heat output with **dosing of water**

- \rightarrow Regeneration with e.g. thermal **solar energy**
- \rightarrow Can be used for cooling as well

Heating/Evaporation

Dynamic orption

www.dynamicsorption.com

Breakthrough Curve of H₂O / N₂ on Zeolite 13X

- Experimental conditions of a simple breakthrough experiment after Activation at 400 °C for 4 h
- 25 °C, Flow rate 4 L min⁻¹
- Pressure: 1 bar
- Standard Adsorber with 80 g of sample
- Inlet composition: **5 g h⁻¹ H₂O in N₂** (volume fraction y(H₂O) = **2.59 %**, Relative humidity approx. **80 % @ 25 °C**)

→ High temperatures during adsorption
 → Loading: 18.9 mmol g⁻¹

 \rightarrow Regeneration at 130 °C for 3.5 h

Breakthrough Curve of H_2O / N_2 on Zeolite 13X

- Sample regenerated at 130 °C for 3.5 h
- Same experimental conditions
- Inlet composition: **5** g h⁻¹ H₂O in N₂ (volume fraction $y(H_2O) = 2.59 \%$, Relative humidity approx. 80 % @ 25 °C)

→ Loading: **15.4 mmol g**⁻¹ → lower \rightarrow Unsymmetrical temperature profiles \rightarrow Residual loading before experiment not

Breakthrough Curve of H₂O / N₂ on Zeolite 13X

- Loadings:
 - **18.9 mmol g⁻¹** (activated at 400 °C) vs. **15.4 mmol g⁻¹** (regenerated at 130 °C)
- Breakthrough Curve shifted to the left
- Breakthrough curves still have similar shapes
- →Zeolite requires harsh regeneration
- \rightarrow High temperatures
- Steep Breakthrough Curves indicate steep isotherms
- \rightarrow High affinity to water

Dynamic orption

Breakthrough Curve of H₂O / N₂ on Silica Gel

- Experimental conditions of a simple breakthrough experiment after Activation at **350 °C for 4 h**
- 25 °C, Flow rate 4 L min⁻¹
- Pressure: 1 bar
- Standard Adsorber with 80 g of sample
- Inlet composition: 5 g h⁻¹ H₂O in N₂ (volume fraction y(H₂O) = 2.59 %, Relative humidity approx. 80 % @ 25 °C)
- \rightarrow Smaller temperatures peaks
- \rightarrow Much longer measurement
- →Loading: **25.9 mmol g**⁻¹

 \rightarrow Regeneration at 130 °C for 3.5 h

Breakthrough Curve of H₂O / N₂ on Silica Gel

- Sample regenerated at 130 °C for 3.5 h
- Same experimental conditions
- Inlet composition: 5 g h⁻¹ H₂O in N₂ (volume fraction y(H₂O) = 2.59 %, Relative humidity approx. 80 % @ 25 °C)

Dynamic orption

Breakthrough Curve of H₂O / N₂ on Silica Gel

- Loadings:
 25.9 mmol g⁻¹ (activated at 350 °C) vs.
 25.1 mmol g⁻¹ (regenerated at 130 °C)
- Breakthrough Curve changed slope
- Changing surface chemistry until stable in cycles

→ **Regeneration** much **easier**, efficient

- \rightarrow No high temperature required
- Regeneration possible by Pressure Reduction
- → **But**: Breakthrough occurs earlier!

Dynamic orption

Breakthrough Curve of H₂O / N₂ on Zeolite 13X and Silica Gel

- Materials behave differently in Adsorption/Desorption Cycles
- Good Agreement with Isotherm data (right hand side)

 \rightarrow Can we use these curves to get information about stored energy and heating power?

Immersion Calorimetry

• Determining the Heat of Adsorption in Liquid Phase

»Enthalpy of Adsorption = Wetting + Condensation« $h_A = h_W + h_C$

Enthalpy of wetting Zeolite: 550 J g⁻¹ (g of Adsorbent) Silica Gel: 140 J g⁻¹(g of Adsorbent)

Zeolite: 1600 J g⁻¹ (g of water) Silica Gel: 300 J g⁻¹ (g of water) (re-calculated according to water isotherms)

	Zeolite 13X	Silica Gel
h _W / J g⁻¹ (H₂O)	1600	300
h _c / J g ⁻¹ (H ₂ O)	2500	2500
h _A / J g ⁻¹ (H ₂ O)	4100	2800

Heat Power Comparison

• Comparing the Heating Power during Adsorption

 $P = (1 - \text{rel. Breakthrough}) \times \frac{5\frac{\text{g}}{\text{h}}}{3600\frac{\text{s}}{\text{h}}} \times h_A$

- Zeolite: More Heating Power, but over short duration → abrupt drop
- Silica Gel: Less Heating Power, continuously decreasing → longer duration

Dynamic orption

18

Breakthrough Curve of H₂O / N₂ on Activated Carbon

- 25 °C, 4 L min⁻¹
- 1 bar
- Inlet composition:
 5 g h⁻¹ H₂O in N₂ (volume fraction y(H₂O) = 2.59 %, RH approx. 80%)
- Loading: **10.0 mmol g⁻¹**
- Shape of curves can be explained by adsorption and condensation in the pores.
- Fast breakthrough due to hydrophobic surface
- Similar to Silica Gel, but Condensation is more pronounced

Dynamic orption

II. Breakthrough Curve of Toluene/N₂

- Activated Carbon D55/1.5
- 25 °C, 4 L min⁻¹
- Inlet composition: 20 g h⁻¹ Toluene in N₂ (volume fraction y(Toluene) = 2.0 %, p/p₀= 0.53 (@ 25 °C)
- → Large temperature peaks
 → Steep Breakthrough Curve
- →Loading: **2.1 mmol g**⁻¹
- $\rightarrow \text{More similar to } H_2O/\text{Zeolite than} \\ H_2O/\text{Activated Carbon}$

III. Breakthrough Curves of a EtOH/H₂O Mixture in N₂ on Activated Carbon

- complex breakthrough due to Type-V/Type-I isotherms
- **roll-up effect** for H₂O due to replacement by EtOH

Dynamic orption

Procedure

3P-SIM

Dynamic (orption

- 1. Measuring Breakthrough Curve
- 2. Measuring **Pure Component Isotherms**:
- 1 of each adsorptive for isothermal simulations3 of each adsorptive for non-isothermal simulations
- 3. Predict **Mixture Adsorption** with IAST or Multi-Component Models
- 4. Predict Breakthrough Curves based on Mass- and Energy Balances
- 5. Evaluate **mass transfer** by varying k_{LDF} to fit the predicted to the experimental Breakthrough Curves

Mass Transfer coefficient k_{LDF}

www.dynamicsorption.com

Fitting of Breakthrough Curves + Temperatures

- After fitting the k_{LDF} Mass Transfer Coefficient → Good Agreement of Experiment and Simulation in a Standard Breakthrough Experiment (5% CO₂ in N₂)
- Course of Volume Fraction and Temperatures is depicted correctly

Dynamic (orption

Fitting of Breakthrough Curves + Temperatures

Overlay of Experiment (Points) and Simulation (Line)

- After fitting the k_{LDF} Mass Transfer Coefficient \rightarrow Good Agreement of Experiment and Simulation in a Standard Breakthrough Experiment (5% CO₂ in N₂)
- Course of Volume Fraction and Temperatures is depicted correctly

H₂O on 13XBFK – Modeling with Dual-site Langmuir Sips isotherm model (DSLAI-SIPS)

- Good correlation between experiment and simulation for Type I isotherms
- Heat effects can be simulated by using **non-isothermal** models
- Future Improvements: Using 2D, instead of 1D models (radial discretization)

 $q_{\text{eq}} = q_{\text{max}} \left(\frac{K_1 \cdot p}{1 + K_1 \cdot p} + \frac{(K_2 \cdot p)^t}{1 + (K_2 \cdot p)^t} \right)$

Dynamic (orption

Dynamic orption

And Q₂ = Q_{Evap}

4. Modelling

H₂O on Silica Gel – Modeling with DSLAI-SIPS

- **Good correlation** between experiment and simulation
- Better prediction of breakthrough curve with $Q_2 = Q_{evap}$
- Better description of temperature curves with Q_1 , Q_2 = heats of adsorption (1=LANGMUIR, 2=SIPS)

Dynamic orption

H₂O on Activated Carbon (Type V Isotherm) – Modeling with DSLAI-SIPS

- Good correlation between experiment and Simulation for with non-isothermal model
- Poor Correlation for isothermal models

28

• Improvement of Breakthrough fit by using loading-dependent $k_{LDF} \rightarrow$ adsorption + pore filling by condensation \rightarrow **But:** prediction of temperatures gets worse

Dynamic orption

EtOH on Activated Carbon – Modeling with DSLAI-SIPS

- Good correlation between experiment and simulation
- Future Improvements:
- \rightarrow Using 2D, instead of 1D models (radial discretization)
- \rightarrow Using Isosteric heat instead of heat of adsorption

5. Conclusions

Characterization under application-related conditions!

- **mixSorb L** is very versatile instrument for application-related studies
 - ✓ Vapor Sorption, determine Isotherms, Mixture Isotherms
 - Breakthrough curves of other Adsorptives in the Presence of Water

✓ Adsorption Studies of Organic Vapors: VOC adsorption

- **3P-SIM** is a powerful simulation tool for Breakthrough Prediction
- Future steps:
 - \rightarrow Simulation of vapor mixture adsorption
 - \rightarrow Implementing **2D**, instead of 1D models (radial discretization)
 - \rightarrow Implementing isosteric heat into non-isothermal models, where possible

Dynamic Orption

Thank you for your attention!

