

Working with Vapors and Low Concentrations in Breakthrough Experiments

Dr. Robert Eschrich

2017-03-28

The presentation will begin shortly. Please be patient while other attendees log in.

Outline

- **1. Breakthrough Curve Theory**
- 2. The mixSorb L Vapor Option
- 3. mixSorb L Adsorber Sizes
- 4. Examples
 - I. Water Breakthrough Curves
 - on Zeolite, Silica Gel and Activated Carbon
 - II. Removing CO₂ from Air
 - with Zeolites
 - III. Breakthrough Curves in Presence of Water
 - IV. Organic Vapors
 - on Activated Carbon
 - V. Investigating the Surface Hydrophobicity with 1,4-Dioxane, Cyclohexane and 2-Propanol
 VI. Applying Liquid Mixtures
- 5. Conclusions & Questions

Static Volumetric Measurements

- Sorption takes place in enclosed chamber
- Pressure is recorded over time
- Pure Gases only

Breakthrough Experiment

- Sorption takes place in open system
- Pressure is constant
- Outlet composition is recorded over time
- Gas Mixtures only

Breakthrough Curves

- Not all Gas Flow Experiments are Breakthrough Experiments!
- Requirement: Fixed Adsorber Bed
 → gas must not pass the sample without interaction!

- What is the result of a breakthrough experiment?
 - ✓ Time until 5 %, 50 % ,... of breakthrough is the cycle or production time
 - ✓ Integration of the full curve gives saturation capacity of a gas on the adsorbent (equilibrium)
 - ✓ Integration until cycle time gives technically usable sorption capacity
 - ✓ Shape of the curve contains information about kinetics/mass transfer

Breakthrough Curves

Procedure

- 1. Determining **100 %** and **0 %** Breakthrough Signal in **Bypass**
- 2. Introducing Carrier Gas to the Sample Cell (Adsorber)
- 3. Pressurizing the Adsorber
- 4. Waiting for **stable** Pressure and Temperatures
- 5. Introducing additionally **CO₂** to create the **Gas Mixture**
- 6. Monitoring Adsorber **Temperatures** along the Sample Bed and **Gas Composition** at the Adsorber Outlet
- 7. Finishing Experiment when Temperatures and TCD Signal are **stable**

time

Watch a Measurement

Resulting Curves

- 40 °C, 2 L min⁻¹
- 5 bar (pressurization with N_2)
- Inlet compositions: 5 % CO₂ in N₂
- Temperature Maxima Decrease in Flow Direction
 Increasing Dispersion
- Area under Temperature Curves increases in Flow Direction
 - ightarrow Transfer of heat through gas flow

Calculating Loadings

$$n_{\text{adsorbed}} = \int \dot{n}_{\text{in}}(t) dt - \int \dot{n}_{\text{out}}(t) dt$$

$$n_{\text{adsorbed}} = \int \dot{V}_{\text{in}}(t) \frac{y_{\text{in}}(t)}{V_{\text{m}}} dt - \int \dot{V}_{\text{out}}(t) \frac{y_{\text{out}}(t)}{V_{\text{m}}} dt$$

Saturation Capacity dq = 0.611 mmol g⁻¹

Integrating over the Curve to e.g. 1 % Breakthrough

Technically Usable Sorption Capacity dq = 0.445 mmol g⁻¹

Integrating over the full Curve

2. The dynaSorb BT Vapor Option

dynaSorb BT

- Fully automated Breakthrough Analyzer
- Integrated Gas Mixing Including Vapors
- Up to 40 L/min Gas Flow, up to **10 bar**
- Up to 4 mass flow controllers (MFCs)
- Up to **2 Evaporators**, each capable to supply vapor mixtures

- Monitoring of gas composition by TCD at the Outlet or Bypass
- You can attach any additional Analytical Device (e.g. **Mass Spec**) at the **sample port**
- Option: Triggering Pfeiffer Mass Spectrometer (Thermostar, Omnistar)
- dynaSim Simulation Software

Evaporators

- Easy, cheap, but:
- Performance highly dependent on temperature and pressure
- No liquid mixtures
- Unstable long-time performance
- Vapor concentration undetermined
- Can be easily used for low flow rates

• Preferred for high flow rates and long measurement times

2. The mixSorb L Vapor Option

Estimation of **saturation pressure** of liquids important for:

- Calculation or **Relative Humidity**
- Calculation of **Dew Point**
- Preventing condensation

Antoine equation
$$log(p_{sat}) = A - \frac{B}{C+T}$$
Relative Humidity $RH = \frac{p_i}{p_{sat}}$ Dalton's law $p_i = p_{total} \cdot y_i$ Volume Fraction $y_i = \frac{\dot{m}}{\dot{V}_{total}}$ Molar Volume (0°C, 1 atm) $V_m = 22.414 \frac{L}{mol}$

12

2. The mixSorb L Vapor Option

Liquids

- Clean, evaporable liquids or liquid mixtures (miscible)
- Only non-corrosive liquids
- No salts, No ionic liquids, No residue forming fluids
- No decomposable liquids

Gases

- Gas should not chemically react with liquid
- Under Vapor Performance: minimum 400 mL min⁻¹ gas flow through evaporator
- Maximum 10,000 mL min⁻¹ gas flow through evaporator port

Liquid dosing system

- High precision **Coriolis-type** Mass Flow Controller
- Flow range: **0.4...20 g h⁻¹**
- Pressurized with an HPLC pump

Heat exchanger

• Temperature range: **20...180 °C**

Manifold Heating

• Temperature range: 20...55 °C

i 🖬 🤊						A					
Composition	Name	Priority	Volume fraction / %	Concentration mmol/L	n /	MFC Output / %	Setpoin	t	Carrier		
	N2 [5 🔹	0.0000	0.000	<u>.</u>	0	0	mL/min	Ē		MFC
N2	C02 [2 🔹	10.0000 🚖	4.461	*	0	500	mL/min			MFC
H20	N2 [3 🔹	89.0000	39.707	A. 	Ģ	4450	mL/min	17		MFC
	N2 [4 🔹	0.0000	0.000	*	Ç	0	mL/min			MFC
	н20 [1 🔹	1.0000	0.446	*		2.409	∲ g/h			Liquid
	Total Row		5000	mL/min			Temperatur	e for Calculation	20.0	÷ °C	
	Flow and loading valid f	or: 0 °C and	d 1 bar				Pressur	e for Calculation	1.00	🔹 bar	
Jiquid	Rel. Humidity in Evapo @ 50°C	orator R	lel. Humidity in Tota	I Flow Total	Loading						
120 on MFC3	9.00 % (Tdp= 8.57 ℃)	42	2.81 % (Tdp= 7.03 %	C) 8.031	g/m3						
CO2 in N2 0_1 CO2 in N2 10 CO2 in N2 10 CO2 in N2 50 CO2 in N2 70 Gas1 Gas2 Helium N2 in CO2 90; N2 in CO2 90; Mew Gases pure CO2 Test	equences										

3. mixSorb L Adsorber Sizes

The mixSorb L is available with 2 different Adsorber sizes

Standard Adsorber

- Inner Diameter:**30 mm**
- Bed height:
 180 mm
- Sample Volume:
 130 cm³
- **4** temperature probes

Small Adsorber

- Inner Diameter:
 10 mm
- Bed height:
 60 mm
- Sample Volume:
 5 cm³
- 1 temperature probe

Selecting the right Adsorber:

- Use the Standard Adsorber whenever possible
 - → Larger amount of sample → larger measurement effect
 - ightarrow Four temperature probes instead of one
 - ightarrow More realistic fixed bed ightarrow Upscaling possible
- The small Adsorber is designed to enable measurement with **low gas concentrations** on high-performance materials.
 - → Measurements can take up to several days or weeks with the Standard Adsorber
 - → Reduction of the sample mass shortens measurement times drastically.
 - → The small Adsorber is not designed for powder samples and samples with low performance.
- Particle sizes for both Adsorbers should be
 > 0.1 mm

Breakthrough Curves of H₂O / N₂: Applications

Air separation is important for O_2 and N_2 production [production of inert gases, medical applications, steel industry,...]

Important to **remove Water** and CO₂ in Air **before**:

- Cryogenic Air Separation:
 - ightarrow Water would plug the piping by freezing.
- Air separation with Pressure Swing Adsorption (PSA) on Zeolites
 - \rightarrow Water has strong affinity to surface (stronger than N₂ and O₂)
 - → Water is not as effectively desorbed upon pressure reduction → Build-up Effects
 - \rightarrow Decreasing efficiency over time
 - \rightarrow Thermal regeneration is expensive

Breakthrough Curves of H₂O / N₂: Applications (II)

Utilizing the Heat of Adsorption

• Energy Storage

→ Adsorption of water vapor → releasing heat of adsorption. Control heat output with **dosing of water**

→ Regeneration with e.g. thermal **solar energy** (roof top)

- ightarrow Can be used for cooling as well
- Adsorption Chiller
 - → Using adsorption of a vapor as driving force for **evaporation of a liquid reservoir**
 - Enthalpy of vaporization is used to cool

Cycling Adsorption/Evaporation vs.
 Desorption/Condensation with two separate units.

\rightarrow Investigating Cycles of Adsorption of H₂O in N₂

Breakthrough Curve of H₂O / N₂ on Zeolite 13X

- Experimental conditions of a simple breakthrough experiment after Activation at 400 °C for 4 h
- 25 °C, Flow rate 4 L min⁻¹
- Pressure: 1 bar
- Standard Adsorber with 80 g of sample
- Inlet composition: 5 g h⁻¹ H₂O in N₂ (volume fraction y(H₂O) = 2.59 %, Relative humidity approx. 80 % @ 25 °C)

→ High temperatures during adsorption → Loading: **18.9 mmol g**⁻¹

 \rightarrow Regeneration at 130 °C for 3.5

Breakthrough Curve of H₂O / N₂ on Zeolite 13X

Breakthrough Curve of H₂O / N₂ on Zeolite 13X

• Loadings:

18.9 mmol g⁻¹ (activated at 400 °C) vs. **15.4 mmol g⁻¹** (regenerated at 130 °C)

- Breakthrough Curve shifted to the left
- Breakthrough curves still have similar shapes

→Zeolite requires harsh regeneration

 \rightarrow High temperatures

- Steep Breakthrough Curves indicate steep isotherms
- \rightarrow High affinity to water

Breakthrough Curve of H₂O / N₂ on Silica Gel

- Experimental conditions of a simple breakthrough experiment after Activation at **350 °C for 4 h**
- 25 °C, Flow rate 4 L min⁻¹
- Pressure: 1 bar
- Standard Adsorber with 80 g of sample
- Inlet composition: 5 g h⁻¹ H₂O in N₂ (volume fraction y(H₂O) = 2.59 %, Relative humidity approx. 80 % @ 25 °C)
 - \rightarrow Smaller temperatures peaks
 - \rightarrow Much longer measurement
 - → Loading: **25.9 mmol g**⁻¹

 \rightarrow Regeneration at 130 °C for 3.5

Breakthrough Curve of H₂O / N₂ on Silica Gel

Breakthrough Curve of H₂O / N₂ on Silica Gel

• Loadings:

25.9 mmol g⁻¹ (activated at 350 °C) vs. **25.1 mmol g⁻¹** (regenerated at 130 °C)

- Breakthrough Curve changed slope
- Changing surface chemistry until stable in cycles

→ Regeneration much easier, efficient

- \rightarrow No high temperature required
- Regeneration possible by Pressure Reduction
- → **But**: Breakthrough occurs earlier!

Breakthrough Curve of H₂O / N₂ on Zeolite 13X and Silica Gel

- Materials behave differently in Adsorption/Desorption Cycles
- Good Agreement with Isotherm data (right hand side)

 \rightarrow Can we use these curves to get information about stored energy and heating power?

Immersion Calorimetry

3P INSTRUMENTS

»Enthalpy of Adsorption = Wetting + Condensation« $h_A = h_W + h_C$ Enthalpy of wetting

Zeolite: 550 J g⁻¹ (g of Adsorbent) Silica Gel: 140 J g⁻¹(g of Adsorbent)

Zeolite: 1600 J g⁻¹ (g of water) Silica Gel: 300 J g⁻¹ (g of water) (re-calculated according to water isotherms)

	Zeolite 13X	Silica Gel	
h _w / J g ⁻¹ (H ₂ O)	1600	300	
h _c / J g ⁻¹ (H ₂ O)	2500	2500	ļ
h _A / J g ⁻¹ (H ₂ O)	4100	2800	

26

Heat Power Comparison

• Comparing the Heating Power during Adsorption

$$P = (1 - \text{rel. Breakthrough}) \times \frac{5\frac{\text{g}}{\text{h}}}{3600\frac{\text{s}}{\text{h}}} \times h_A$$

- Zeolite: More Heating Power, but over short duration → abrupt drop
- Silica Gel: Less Heating Power, continuously decreasing → longer duration

For Comparison: Breakthrough Curve of H₂O / N₂ on Activated Carbon

• 25 °C, 4 L min⁻¹

• 1 bar

- Inlet composition:
 5 g h⁻¹ H₂O in N₂ (volume fraction y(H₂O) = 2.59 %, RH approx. 80%)
- Shape of curves can be explained by adsorption and condensation in the pores.
- Fast breakthrough due to hydrophobic surface
- Similar to Silica Gel, but
 Condensation is more pronounced

4. Examples – II Removing CO₂ from Air

Breakthrough Curves of CO₂ / N₂: Applications

Air separation is important for O_2 and N_2 production [production of inert gases, medical applications, steel industry,...]

Important to **remove** Water and **CO₂** in Air **before**:

- Cryogenic Air Separation:
 - \rightarrow CO₂ would plug the piping by freezing.
- Air separation with Pressure Swing Adsorption (PSA) on Zeolites
 - \rightarrow CO₂ has strong affinity to surface (stronger than N₂ and O₂)
 - → CO_2 is not as effectively desorbed upon pressure reduction → Build-up Effects
 - ightarrow Decreasing efficiency over time

Verborgene Adsorption – TSA-Anlagen in industriellen Gasaufbereitungsprozessen Benedikt Schürer, Linde AG, Engineering Division, Pullach, Deutschland ProcessNet Dechema Jahrestreffen 2017

4. Examples – II Removing CO₂ from Air

Breakthrough Curve of 450 ppm CO_2 in N_2 on Zeolite 13X

- Pressure: 6 bar
- Gas Flow: 20 L min⁻¹ → High Flow Application
 → 0.47 m s⁻¹ superficial flow velocity (at STP)
 Typical superficial flow velocities in the industry are around 0.4 m s⁻¹
- Zeolite, 55 g
- Temperature: **25 °C**
- Inlet composition: **450 ppm CO₂, balance: N₂** (9 mL min⁻¹ CO₂, 19991 mL min⁻¹ N₂)
- For Measurements with such low concentrations, a Mass Spec is recommended
- Pfeiffer ThermoStar Mass Spec attached and synchronized
- Mass Spec Data were then imported in dynaWin and used for calculations

生物的错

Breakthrough Curve of 450 ppm CO₂ in N₂ on Zeolite 13X

Integration gives **loading**: **0.419 mmol g⁻¹**

With the low concentrations and the very high flow rates, the breakthrough curve is not as steep as usual with Zeolites.

→ Measurements with very low concentrations are possible with the dynaSorb BT

Breakthrough Curves in presence of Humidity: Applications

Most processes and application are running in the presence of water (humidity)

- The presence of water can have an major impact on the separation performance of adsorbents (*e.g.* on Zeolites)
- Purification of waste air, indoor air cleaning, gas masks
- Characterization under application-related conditions!

- **Example:** Adsorption of Propane in the presence of Water on **Activated Carbon** (about 55 g)
- 25 °C, Flow rate 4 L min⁻¹
- Pressure: 1 bar, Standard Adsorber
- Using Mass Spectrometer as Analytical Device

Co-Adsorption of Propane and Water

Three Segments \rightarrow Sequence of Breakthrough Experiments

Segment 1

volume fraction y(H₂O) = 0.95 %, Relative humidity approx. 30 % @ 25 °C

Segment 2

volume fraction $y(C_3H_8) = 5.00\%$, volume fraction $y(H_2O) = 0.95\%$, Relative humidity approx. 30\% @ 25°C

Segment 3

volume fraction $y(C_3H_8) = 5.00 \%$, volume fraction $y(H_2O) = 2.70 \%$, Relative humidity approx. 85 % @ 25 °C

Co-Adsorption of Propane and Water

Segment 2 \rightarrow Breakthrough of Propane in N₂ with RH 30% @ 25 °C

- Water gets displaced
- Distinct Temperature Curves
- Loading: q(C₃H₈) = 2.84 mmol g⁻¹
- Very Good Agreement with Loading at dry conditions (not shown):
 2.88 mmol g⁻¹ and iSorb measurements

Co-Adsorption of Propane and Water

Segment 3 \rightarrow Increasing RH to 85 % in the presence of Propane

4. Examples – IV Organic Vapors on Activated Carbons

Breakthrough Curves with Organic Vapors

Removing Solvent Vapors and VOC (Volatile Organic Compounds) from air

- Pharmaceutical Industry
- Pigment, Toner, Color, Paint Manufacturers
- Solvent Recovery
- VOCs in atmosphere lead to the formation of ground-near Ozone

Removing Hydrocarbon Vapors to prevent condensation from

- Synthesis Gas (CO + $x H_2$)
- Natural Gas

Breakthrough Curve of Toluene/N₂

- Activated Carbon D55/1.5
- 25 °C, 4 L min⁻¹
- Inlet composition: 20 g h⁻¹ Toluene in N₂ (volume fraction y(Toluene) = 2.0 %, p/p₀= 0.53 (@ 25 °C)
- → Large temperature peaks
 → Steep Breakthrough Curve
 → Loading: 2.1 mmol g⁻¹
 → More similar to H₂O/Zeolite than

H₂O/Activated Carbon

38

4. Examples – IV Organic Vapors on Activated Carbons

Different Surface Chemistry

Different Adsorbents have different Surface Properties

- Hydroxyl Groups on Silica Gel
- Charged/Polar Surface Properties on Zeolites
- Organic Hydroxyl, Aldehyde, Ketone, Acidic, Aliphatic and Aromatic Groups on Activated Carbons

ightarrow Investigating the Adsorption of organic Vapors with different Polarity

Adsorptives with different Polarity

Using Different Adsorptives with different Polarity

• Elutropic Series

- To see the Solid-Gas interaction \rightarrow Measure at **low p/p**⁰ Otherwise: Pore Filling –Adsorbate interaction
- Select different Solvents and measure at equal p/p₀
 → Different concentrations!

Compound	E
<i>n</i> -Hexane	0.00
Cyclohexane	0.03
Toluene	0.22
Benzene	0.25
Diethylether	0.29
Chloroform	0.31
Acetone	0.43
1,4-Dioxane	0.43
Tetrahydrofuran	0.48
2-Propanol	0.60
Ethanol	0.68
Methanol	0.73
Water	1.00

Katie Cychosz, »Interpretation of Data, Surface&Pores«, Quantachrome, 2011

Breakthrough Curves with Cyclohexane/N₂

- 25 °C, Flow rate 1 L min⁻¹
- Pressure: 1 bar
- Small Adsorber with approx. 3 g of sample
- 1 g h⁻¹ Cyclohexane in N₂ volume fraction y(Cyclohexane) = 0.44 %, p/p₀ = 0.033 @ 25 °C

		1.14
Asorbent	Loading / mmol g ⁻¹	and the
Activated Carbon	1.34	
Silica	0.54	HAN SHI
Zeolite 13X	2.02	-the
	TAL TAL	J.
	Wall Street Stre	100

Breakthrough Curves with 2-Propanol/N₂

- 25 °C, Flow rate 2 L min⁻¹
- Pressure: 1 bar
- Small Adsorber with approx. 3 g of sample
- 0.645 g h⁻¹ 2-Propanol in N₂ volume fraction y(2-Propanol) = 0.2 %, p/p₀ = 0.033 @ 25 °C

Asorbent	Loading / mmol g ⁻¹	Factor (Cyclohexane)
Activated Carbon	2.10	1.56
Silica	2.88	5.33
Zeolite 13X	3.41	1.69

Does the smaller size of 2-Propanol play a role?

Breakthrough Curves with 1,4-Dioxane/N₂

- 25 °C, Flow rate 2 L min⁻¹
- Pressure: 1 bar
- Small Adsorber with approx. 3 g of sample
- 0.782 g h⁻¹ 1,4-Dioxane in N₂ volume fraction y(1,4-Dioxane) = 0.16 %, p/p₀ = 0.033 @ 25 °C

		ALE MARTINE
Asorbent	Loading / mmol g ⁻¹	Factor (Cyclohexane)
Activated Carbon	2.17	1.62
Silica	2.58	4.78
Zeolite 13X	2.05	1.01

Comparison: Loading vs. Elutropic Index

- Silica appears to be least hydrophobic
- Maybe concentration still to high for Activated Carbon and Zeolite
 → Pore Filling?
- Conformation Changes of Cyclohexane and 1,4-Dioxane possible

→ Further comprehensive investigations necessary

45

4. Examples – VI Applying Liquid Mixtures

Breakthrough Curves with Organic Vapor Mixtures

Removal of Solvent Mixtures

- Pharmaceutical Industry
- Pigment, Toner, Color, Paint Manufacturers
- Solvent Recovery
 - \rightarrow Do the different Adsorptives influence each other?

- Zeolite 13X and Activated Carbon D55/1.5
- 25 °C, Flow rate 2 L min⁻¹
- Pressure: 1 bar
- Small Adsorber with approx. 3 g of sample
- 800 ppm Cyclohexane + 300 ppm 1,4-Dioxane
 (0.5 g h⁻¹ Mix: 125.5 g Cyclohexane + 49 g 1,4-Dioxane)
- Mass Spectrometer

4. Examples – VI Applying Liquid Mixtures

Cyclohexane/1,4-Dioxane on Activated Carbon D55/1.5

- Very long experiments
 - → Small Adsorber very useful for low concentrations
- No spontaneous Breakthrough
- Short technically usable sorption capacity BUT: Very high flow velocity at a very small fixed bed!
 - \rightarrow very short residence time
- Small Adsorber only for equilibrated data!
- Loadings

		Anna si
Adsorptive	Loading / mmol g ⁻¹	Seconds.
Cyclohexane	0.011	
1,4-Dioxane	0.009	er Soonteks
	4	Contrate.

Cyclohexane/1,4-Dioxane on Zeolite 13X

- Very long experiments
 - → Small Adsorber very useful for low concentrations
- No spontaneous Breakthrough
- Short technically usable sorption capacity BUT: Very high flow velocity at a very small fixed bed!
 - \rightarrow very short residence time
- Small Adsorber only for equilibrated data!
- Loadings

Adsorptive	Loading / mmol g ⁻¹	<u>ģinar</u> i
Cyclohexane	0.014	
1,4-Dioxane	0.009	er Soonen d
	4	Curry .

5. Conclusions

3P INSTRUMENTS

Characterization under application-related conditions!

- mixSorb L is very versatile instrument for application-related studies
- Vapor Option
 - Vapor Sorption, determine Isotherms, Mixture Isotherms
 - Breakthrough curves of other Adsorptives in the Presence of Water
 - ✓ Adsorption Studies of Organic Vapors: VOC adsorption
- Broad Concentration Range (from ppm to high %)
 - ✓ Different Massflow Controllers
 - ✓ Different Adsorber Sizes → Reasonable measurement time
- Mass Spectrometer allows experiments with more complex gas/vapor mixtures
 - ightarrow investigation of competitive adsorption possible

Thank You!

Thank you for your attention!

mixSorb L Liquid Compression Pumps

Star Wars[®] Imperial Walker »AT-AT«

2. Gas Flow Methods

mixSorb L

Standard Breakthrough Curves concentration concentration time time Breakthrough time • Mass Transfer Displacement • Technically usable Sorption Capacity Modelling

Multicomponent Adsorption

Competitive Adsorption

Isotherms

- Saturation Capacity
- Isotherms (single or **mixture**) ۲

concentration time

- Regenerability
- Cycle-Stability

- Emulation of PSA

centration time

Chromatographic parameters

3. mixSorb L Adsorber Sizes

mixSorb L Adsorber Packing:

4. Simulation

Mass Transfer coefficient k_{LDF}

D. Bathen, M. Breitbach, Adsorptionstechnik, 1.Aufl., Springer Verlag, Heidelberg, 2001.

W. Kast, Adsorption aus der Gasphase: Ingenieurwissenschaftliche Grundlagen und technische Verfahren, 1.Aufl., VCH Wiley Verlag, Weinheim, 1988.