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Introduction – Technical Necessity

For such applications, one must consider gas mixtures and their sorption properties in any case.

Fine cleaning of gases (i.e. purification of H2, 
natural gas, bio methane…)

Waste air treatment, respiratory protection, 
solvent recovery, removal of pollutants…)

Gas separation (i.e. Air separation…)

Modern and effective materials 
should have high sorption 
capacities, high selectivities , 
and a good kinetic performance.

Application of Porous Materials as Adsorbents
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Introduction – Characterization of Adsorbents
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Introduction – Why are Textural Properties not enough…?

• BET-Surface

• Pore Size Distribution

• Micropore Volume

Textural Properties of Adsorbents:

Textural properties do not allow quantitative statements regarding:

• sorption affinity 

• selectivity

• No information of kinetics

Textural properties allow only limited qualitative statements regarding:

• expected saturation capacity (i.e. from micropore volume)

• rough assessment of general sorption properties from pore size distribution
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Basics – Mixture Equilibria (Theory)

Dependence of partial and total adsorption amounts

- - partial loadings, - total loading

Investigation along:

THE READ LINE – Case A

THE BLUE LINE – Case B

( ) ( )pFKTconstYYn CHCOtotalCHCO == .,
4242 ,,

( ) ( )
4242

,.,, CHCOtotalCHCO YYFKTconstpn ==

( )pYYFKTn CHCOtotalCHCO ,,
4242 ,, =

General:
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Basics – Mixture Equilibria (Theory)
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Typical presentation of sorption capacities for binary mixtures 
Case A – variable gas composition Case B – variable pressure
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Basics – Mixture Equilibria (Theory)

Typical presentation of sorption capacities for binary mixtures 
Case A – variable gas composition Case B – variable pressure

N-Y-Plot with statement to the partial loadings at constant pressure

N-p-Plot with statement to the adsorbed amount at constant gas 
phase composition
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Basics – Mixture Equilibria (Theory)

• Multi Component-Langmuir (MCLAI)

• Multi Component-Sips (MCSIPS)

• Multi Component-DSLAI (MCDSLAI)

Models for
mixture data

Extended 
langmuir-like 

equations
IAS-Theory VS-Model

• IAST with Langmuir

• IAST with Toth

• IAST with DSLAI, DSLAISIPS
• IAST with UNILAN

• VS-Model with Wilson
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Requirements:

• Knowledge of pure 
component isotherms

predictive calculations with 3P sim possible



www.3P-instruments.com info@3P-instruments.com

Basics – Mixture Equilibria (Theory)

Calculations of mixture data with 3P sim – Recommendations for pure components

1. Fitting of pure component data at same temperature for all components

2. All data as table - pressure / bar (mbar) and adsorbed amount / mmol g-1

3. All components must be fitted with same isotherm model

TYP I: Langmuir, SIPS, Toth, 

DSLangmuir, DSLangmuirSIPS, 

UNILAN

Typ II: (Freundlich)

Typ IV, V: DSLangmuirSIPS, (DSLangmuir), 

(SIPS)
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Basics – Thermodynamic Selectivity a

Relationship between loading – mole fraction – selectivity

Often Limit of selectivity do not reflect the selectivity for the real 
separation process, therefore a single consideration is not enough

Limit of selectivity can be used to check the results of IAST-Calculations or other models 
(only for models with Henry range)
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Basics – Dynamic Gas Sorption a multi-scale Process
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Basics – Flow Plot of a Setup for Dynamic Measurements

➢ Flow through the regenerated sample with a predefined gas mixture
➢ Measurement of data at a specified pressure and gas mixture
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Basics – Comparison of static and dynamic methods

𝑛ads,𝑖 = 𝑛dosed,𝑖 − 𝑛free,𝑖

𝑛free,𝑖 =
𝑝Cell,𝑖 𝑉Dose + 𝑉Cell

𝑅𝑇

𝑛dosed,𝑖 =
𝑝Dose,𝑖 𝑉Dose

𝑅𝑇

𝑛ads =෍

0

𝑖

𝑛ads,𝑖

• Sorption takes place in enclosed chamber
• Pressure is recorded over time
• Pure gases only

• Sorption takes place in open system
• Gas mixtures only, constant pressure
• Outlet composition is recorded over time

𝑛adsorbed = න ሶ𝑛in(𝑡)d𝑡 − න ሶ𝑛out(𝑡)d𝑡
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Basics – Experimental Possibilities of dynamic Method

Simple Breakthrough Curves Multicomponent Adsorption Isotherms

• Breakthrough time
• Mass transfer
• Technically usable sorption capacity
• Modelling

• Competitive adsorption
• Displacement

• Saturation capacity
• Isotherms (single or mixture)

Cycle stability testing PSA-Emulation Chromatography

• Regenerability
• Cycle-Stability

• Emulation of PSA
• Down-Scaling

• Chromatographic parameters
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Basics -Different segments of a Breakthrough Curve
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• Determination of
technical usable sorption capacity

• Can be used as benchmark for 
separation performance of 
adsorbents 

• Mass transfer coefficient, axial 
dispersion, shape of isotherm

• Heat effects, heat dissipation 

• The time interval of mass transfer 
zone has to be minimized

• Determination of 
saturation capacity

• By assuming of thermodynamic 
controlled system → Measurement 
of isotherms possible

Saturated ZoneMass Transfer ZoneUnsaturated Zone
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Basics – Mixture Equilibria

• ternary mixture: 

CO2/CH4/He (non-adsorbable carrier gas)

Displacement of less adsorbed component

→ Partial desorption, role-up effects

→ Complete determination (evaluation complex)

CO2/CH4/N2 (adsorbable carrier gas) 

→ Preloading of sample with pure N2

→ Incomplete ternary mixture data (CO2, CH4)

• binary mixture: 

CO2/He (non-adsorbable carrier gas)

→ Pure component equilibria

CO2/CH4 (adsorbable carrier gas)

→ Preloading of sample with pure CH4

→ Incomplete determination of the system

(evaluation mostly simple)

→ Partial loading for CO2 (mixture sorption data)
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Basics – Schedule of a Mixed Gas Experiment

➢ Predictive calculation of mixture data desired (Y/N)? 

→ Pure component isotherms necessary

➢ Is a complete determination of the system desired? 

→ determination of all partial loadings, diluting with Helium-carrier gas (Y/N)

➢ Definition of total flow, concentration, measurement temperature etc. 

→ Sample must be under „thermodynamic control“ (always) 

➢ Depending on concentration range one should consider:

→ Calibration of suitable analytic technique (always)

➢ Sample preparation and definition of preparation conditions

→ Temperature, carrier gas (always)

➢ Build up of a measurement routine

→ pressurization, Helium or adsorptive 1 (Helium for complete determination)

➢ Evaluation of the experiment

Definition of 
measurement 

task 

Definition of 
measurement 

conditions 

Selection and 
calibration of 

analytics

Measuring and 
evaluation
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Basics – Schedule of a Mixed Gas Experiment
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Basics – Schedule of a Mixed Gas Experiment
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Basics – Schedule of a Mixed Gas Experiment
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Basics – Example of a Mixed Gas Experiment

Task: Investigation of a binary system

Activated Carbon, CO2 (25%), CH4 (75%), complete determination at 5 bar

1. Weighting the sample and sample preparation at 120°C, He-flow 200 ml min-1 (STP)

2. Definition of partial pressures: 1.25 bar CO2; 3.75 bar CH4; 5 bar He; Ʃ10 bar 

3. Gas flows: 0.25 l min-1 (STP) CO2, 0.75 l min-1 (STP) CH4, 1l min-1 (STP) He

4. Pressurization with Helium up to 10 bar

5. Start of measurement by simultaneous dosing of CO2 and CH4 in Helium

6. Recording of effluent gas composition via MS (all components!)

7. After breakthrough, regeneration of sample for determination of activated mass
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Basics – Example of a Mixed Gas Experiment

Breakthrough curve with “role-up” effect

➢ Includes all partial loadings

➢ Reference on pCO2=1.25 bar and 

PCH4=3.75 bar

➢ Mole fraction: yCO2=0.25; yCH4=0.75 

➢ Helium will not be considered!

➢ n(CO2); n(CH4); n(total); a

Result of experiment:

Integration of areas:

Task: Investigation of a binary system

Activated carbon, CO2 (25%), CH4 (75%), complete determination at 5 bar
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Mixture Equilibria – Examples of a Mixed Gas Experiment

5% CO2 15% CH4 in He at 20°C, 5 bar, 2500 ml min-1 (STP) on D 55/1.5

Dynamic 
experiment

(determination of 
all partial loadings)

aExperiment=3.63

nCO2= 0.86 mmol g-1

nCH4=0.71 mmol g-1

System is complete determined, all partial loadings were measured (points).

Data can be used to confirm predictive models for mixture sorption (lines).
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Mixture Equilibria – Examples of a Mixed Gas Experiment

5% CO2 in N2 at 20°C, 5 bar, 2500 ml min-1 (STP) on D 55/1.5

Dynamic 
experiment

(determination only
of CO2 loading)

aExperiment= not determined

nCO2= 0.57 mmol g-1

nN2= not determined

System is incomplete determined.

A thermodynamic model is necessary to get all data!

This simple technique is widely used in practice (i.e. only the separation of a harmful component is of interest)
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Mixture Equilibria – Examples of a Mixed Gas Experiment
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Sequence of several breakthrough curves on activated carbon D 55-1.5
Conditions:

• 20°C, 2 L min-1

• 10 bar (pressurization with N2)

• Concentrations:  5% CO2 - 80% CO2 in N2

Procedure:

• Start further breakthroughs after equilibrium before

• Integration and summation results in partial loading data 
of CO2

• Volume ratio and total pressure defines the partial 
pressure of CO2

→Mixed isotherm data of CO2 in N2

→ Always less adsorbed component as carrier (here: N2)
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Mixture Equilibria – Examples of a Mixed Gas Experiment

• Dynamic measured data (red) 

• IAST-Model (Ideal Adsorbed Solution Theory) 
based on pure component isotherms (lines)

• Mixture of CO2 and N2 shows ideal behavior on AC
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Determination of partial loading data of CO2 on AC D 55-1.5 by performing 
sequentially experiments along constant total pressure.
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A thermodynamic model is necessary to get all data!
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• Using Helium as one component and assuming that it is not 
adsorbed allows measurement of pure component isotherms

• Using other gases than Helium yields in mixture isotherms

Mixture Equilibria – Examples of Pure and Mixed Gas Isotherms
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Breakthrough Experiments - Comparison

15% Propane 45% Propylene in He at 25°C, 5 bar, 1000 ml/min on AC1, AC2, AC3
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Sample: AC1
YPropane= 0.25
YPropylene= 0.75
nPropane= 0.03 mmol g-1

nPropylene= 0.06 mmol g-1

aPropylene= 0.67

Sample: AC2
YPropane= 0.25
YPropylene= 0.75
nPropane= 0.2 mmol g-1

nPropylene= 1.7 mmol g-1

aPropylene= 2.83

Sample: AC3
YPropane= 0.25
YPropylene= 0.75
nPropane= ca. 0 mmol g-1

nPropylene= 2.1 mmol g-1

aPropylene= not determined (>20)

Selectivity

Statements on selectivity also possible without thermodynamic models

Determination of sorption capacities and selectivities, recording of kinetic
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Mixture Gas Equilibria - Summary

Summary Part I - Mixture Equilibria
• With breakthrough experiments mixture sorption data with He also pure component are accessible.

• By assumption of a non-adsorbable carrier (i.e. He) a complete determination of mixture system is 
possible (adsorptive 1+adsorptive 2+He).

• Investigation of role up effects

• Determination of all partial loadings and calculation of  thermodynamic selectivity a

• Simple breakthrough data can also contain mixture equilibria (i.e. for carrier gas as second adsorptive)

• No role up effect can be observed, thermodynamic model necessary for whole description

• No experimental determination of selectivity a possible

• Carrier gas should be the less adsorbed component

For the investigation of role up effects and a→ selective analytical devices necessary (Mass Spec)

Unselective analytical devices are enough for binary systems (i.e. TCD)
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Kinetics from Breakthrough Experiments 

Breakthrough curves of 5% CO2 in N2 on zeolites 13X, 5A, 3A (1 bar, 5 l/min (STP), 20°C)
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Qualitative observation of Mass Transfer Zone:

• Zeolite 3A have a spontaneous breakthrough due too narrow pores (kinetic-steric exclusion)

• Zeolite 5A exhibits a broad mass transfer zone 

→ indicates lower kinetic for 5A as 13X

• Both zeolites, 5A and 13X have quite unsymmetrical breakthrough curves 

→ indicate a big influence of temperature effects and shape of isotherms
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Kinetics from Breakthrough Experiments 

Question:

• Is it possible to get reliable kinetic data from such experiments?

• How is the influence of the isotherm shape and temperature effects?

Answer:

• Yes, but associated with high effort (model of mass- and energy 
balances is necessary)

→ Simple comparison of slope can be erroneous

• For quantification of temperature effects also a model must be used!

→ I.e. in some cases heat effects can be control nearly the whole curve
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Kinetics from Breakthrough Experiments

Parametric study - Influence of isotherm shape (favored isotherm)

Calculation of breakthrough with same kLDF value and different isotherm shapes

• Slope of breakthrough curves strongly depends on isotherm shape!

→ simple comparison of slope at C/C0=0.5 only for materials with similar or same isotherm shapes

→ Shape of isotherms cannot be neglect, view on desorption curves can be helpful
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Kinetics from Breakthrough Experiments

Parametric study - Influence of nonisothermal effects

Calculation of breakthrough with same kLDF value and different heat transfer coefficients

• Slope of breakthrough curves strongly depends on non-isothermal effects!

→ simple evaluation of slope at C/C0=0.5 leads to wrong interpretation

→ Temperature profiles can’t be ignored, lower concentrations and desorption can be helpful
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Kinetics from Breakthrough Experiments 

Input Parameters

Isotherms

Kinetics (start values)

Co-adsorption

Feed flow,

Feed pressure

Product purity

Kinetics, cycle duration, pressure range…

Simulation model

Heat of adsorption
and heat capacities

Adsorber 
dimensions

Heat transfer

Red: properties of adsorbent/adsorptive system
Black: properties of adsorber and adsorber wall



www.3P-instruments.com info@3P-instruments.com

co
n

ce
n

tr
at

io
n

c 
lo

ad
in

g
q

concentration loading

Kinetics from Breakthrough Experiments 

Kinetic considerations - Mass Transfer coefficient kLDF

Adsorptive

Adsorbent

Adsorbate

Convection, Diffusion

Film Diffusion

Pore Diffusion

Pore

Free 
Diffusion

KNUDSEN

Diffusion

Surface 
Diffusion

Film Diffusion

Adsorption

Convection, 
Diffusion

Effective Inner
Mass Transfer,

Linear 
Driving Force

(LDF)

Adsorption

Convection, 
Diffusion

Simplification

LDF
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Kinetics from Breakthrough Experiments 

Example breakthrough calculation with isothermal SIPS model

• No knowledge of script language

• Simple input form for parameter

• Overview of used isotherm 
model

• No knowledge of solver 
necessary

• Usage of own Dz, Dt values 
possible

• Output of stoichiometric values

• Comparison of calculations with 
Experiment
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Kinetics from Breakthrough Experiments 

Example breakthrough calculation with isothermal SIPS model

• No knowledge of script 
language

• Simple input form for parameter

• Overview of used isotherm 
model

• No knowledge of solver 
necessary

• Usage of own Dz, Dt values 
possible

• Output of stoichiometric values

• Comparison of calculations 
with Experiment
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Kinetics from Breakthrough Experiments 

Example breakthrough calculation with nonisothermal SIPS model

Observation

• kLDF value (isothermal model)

→ ~ 4 min-1

• kLDF value (nonisothermal model)

→ ~ 13 min-1

• approx. 3 times higher

→ Heat effect should not be 
neglected
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Kinetics from Breakthrough Experiments (one Adsorptive) 

Determination of LDF-constant

Input Isotherms

Input Heat Transfer

Bed/Wall ~   50 W m-2 K-1) 
Wall/Liquid   ~ 400 W m-2 K-1)

5% CO2 in He at 40°C, 5 bar, 1000 ml/min on D 55/1.5

Finding of Mass Transfer Coefficient kLDF:

Start value  for kLDF 1 min-1

Best fit with kLDF 13 min-1

Iterative recalculation !

CO2 isotherms on D 55/1.5
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Fitting kLDF

Fitting 

Heat Transfer Coeff. 
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Kinetics from Breakthrough Experiments (two Adsorptives) 
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Input pure component 
Isotherms

CO2 isotherms on D 55/1.5

N2 isotherms on D 55/1.5

CO2 /N2 mixture isotherms on D 55/1.5

Adsorption and Desorption of CO2 in N2

5% CO2 95% N2 at 
40°C, 5 bar, 2 L/min 
on D 55/1.5

Determination of kLDF

only for CO2
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Kinetics from complex Breakthrough Experiments (two Adsorptives)
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CO2 /CH4 mixture isotherms on D 55/1.5

Fitting kLDF

Fitting 

Heat Transfer Coeff. 

Breakthrough of a mixture CO2/CH4 in He

5% CO2 15% CH4 in He 
20°C, 2500 ml/min,    
5 bar on D 55/1.5

Determination of kLDF

for CH4 and CO2

Multi component 
model necessary 
(here MCSIPS)
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Kinetics from Breakthrough Experiments

High effort to calculate breakthrough due to shape of isotherm, good isotherm model fit necessary!

H2O isotherm on D 55/1.5 at 25°C

• Isotherm fit with an empiric dual-site Langmuir-SIPS equation

• Heat of adsorption 60 kJ mol-1 assumed

• Heat for condensation 40.8 kJ mol-1 (at 100°C)
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2.5% H2O in N2 at 25°C (RH 80%), 
1 bar, 4000 ml min-1 on D 55/1.5

→ Description of the curve is possible
→ Isothermal calculation failed for this example 
→ Stronger deviations for condensation part
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→ kLDF = 1.2 min-1
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Kinetics from Breakthrough Experiments – how to use?
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5% CO2 95% N2 at 40°C, 5 bar, 2000 ml min-1 on D 55/1.5

Known model parameter after fitting

• Isotherms (MCSIPS)
• Kinetic parameter (kLDF) 
• Heat transfer parameter

→ Model can consider slower 
desorption due to curved isotherm

5.78 min

Question concerning:

1) Desorption pressure in Pressure 
Swing Processes (PSA)?

Parameter from experiment:

• Adsorption time 5.78 min
• Adsorption pressure 5 bar
• Feed flow 2000 ml min-1

• Purge flow 2000 ml min-1 pure N2

General requirements for PSA:

• Purge flow 500 ml min-1 pure N2

• Desorption in counter current flow
• Max. CO2 content in product 1%
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Kinetics from Breakthrough Experiments – how to use?

Cycle times for modeling:

• Adsorption time 5.78 min
• Desorption time 5.03 min
• Calculating 5 cycles

Cycle times for experiment:

• Adsorption time 5.78 min @ 5 bar
• Blow down time ~ 0.25 min
• Desorption time 4.75 min
• Pressurization to 4.6 bar with N2

• Pressurization from 4.6 bar to 5 bar with feed
• Measurement of 5 cycles

1 2 3 4 5

Calculations with pDES= 1 bar

Predictions by modeling:

Regeneration conditions not strong enough
→ CO2 impurity in effluent flow increases 

from cycle to cycle to ~ 3 %
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Kinetics from Breakthrough Experiments – how to use?

Cycle times for modeling:

• Adsorption time 5.78 min
• Desorption time 5.03 min
• Calculating 5 cycles

Cycle times for experiment:

• Adsorption time 5.78 min @ 5 bar
• Blow down time ~ 0.25 min
• Desorption time 4.75 min
• Pressurization to 4.6 bar with N2

• Pressurization from 4.6 bar to 5 bar with feed
• Measurement of 5 cycles

1 2 3 4 5

Calculations with pDES= 1 bar

Predictions by modeling:

Regeneration conditions not strong enough
→ CO2 impurity in effluent flow increases 

from cycle to cycle to ~ 3 %

Predictions were confirmed by experiment
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Kinetics from Breakthrough Experiments – how to use?

Cycle times for modeling:

• Adsorption time 5.78 min
• Desorption time 5.03 min
• Calculating 5 cycles

Cycle times for Experiment:

• Adsorption time 5.78 min @ 5 bar
• Blow down time ~ 0.25 min
• Desorption time 4.75 min
• Pressurization to 4.6 bar with N2

• Pressurization from 4.6 bar to 5 bar with feed
• Measurement of 5 cycles

Calculations with pDES= 0.5 bar
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Predictions by modeling:

Regeneration conditions good enough
→ CO2 impurity in effluent flow increases 

from cycle to cycle, but still below target (<1%)
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Kinetics from Breakthrough Experiments – how to use?

Cycle times for modeling:

• Adsorption time 5.78 min
• Desorption time 5.03 min
• Calculating 5 cycles

Cycle times for experiment:

• Adsorption time 5.78 min @ 5 bar
• Blow down time ~ 0.25 min
• Desorption time 4.75 min
• Pressurization to 4.6 bar with N2

• Pressurization from 4.6 bar to 5 bar with feed
• Measurement of 5 cycles
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Predictions by modeling:

Regeneration conditions good enough
→ CO2 impurity in effluent flow increases 
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Predictions were confirmed by experiment
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Kinetics from Breakthrough Experiments – how to use?

Cycle times for modeling:

• Adsorption time 5.78 min
• Desorption time 5.03 min
• Calculating 5 cycles

Cycle times for experiment:

• Adsorption time 5.78 min @ 5 bar
• Blow down time ~ 0.25 min
• Desorption time 4.75 min
• Pressurization to 4.6 bar with N2

• Pressurization from 4.6 bar to 5 bar with feed
• Measurement of 5 cycles

Calculations with pDES= 0.5 bar
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Modeling divers from experiment!

• Cycle steps in modeling strong simplified
• Variations experiment from model mainly in 

desorption part

→ Modeling can help to reduce experimental effort
→ final evaluation only by experiment!
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Kinetics from Breakthrough Experiments - Summary

Summary Part II - Kinetics

• Comparison of breakthrough slope only qualitative → can lead to wrong interpretation

• Strong nonisothermal effects must be considered for evaluation of kinetics → influence of dissipation of heat

• Measurement of desorption part is helpful→ influence of isotherm, heat dissipation etc.

• Model is necessary to get reliable transport parameter → kLDF value

• kLDF values depend on concentration, total pressure etc. →measurements under same conditions like 
technical process

• With well-known model parameter set predictive calculations possible

• Results: technical useable sorption capacity, optimization of regeneration, cycle times etc.

→ reducing experimental effort in bench scale

→ helpful for upscaling

• But: Validation by some experiments necessary
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Thank you for your attention!

Please visit our website for further information

www.dynamicsorption.com
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