

Universidade Federal do Ceará

Laboratório de Pesquisa em Adsorção e Captura de CO₂

Adsorption modelling as a tool to estimate transport properties

Moises Bastos-Neto

Universidade Federal do Ceará

Leipziger Symposium on dynamic sorption 2019

May 14th 2019

LEIPZIGER SYMPOSIUM on dynamic sorption

2019

Advanced Sorbent Materials on the Way to Application

✓Introduction – Concepts

- \checkmark Aims and basics
- ✓ Adsorption
- ✓ Adsorbents
- ✓ Column dynamics

✓ Modelling – Theoretical Background

- \checkmark Definitions and terminology
- ✓ Momentum, Material and Energy Balances
- ✓ Equilibrium theory
- ✓ Adsorption kinetics

✓Assessing mass transfer

- ✓ Simple fit to breakthrough curves
- ✓ From uptake curves
- ✓ From calorimetry

✓ Final remarks

✓Introduction – Concepts

- \checkmark Aims and basics
- ✓ Adsorption
- ✓ Adsorbents
- ✓ Column dynamics

✓ Modelling – Theoretical Background

- \checkmark Definitions and terminology
- ✓ Momentum, Material and Energy Balances
- ✓ Equilibrium theory
- ✓ Adsorption kinetics

✓Assessing mass transfer

- \checkmark Simple fit to breakthrough curves
- ✓ From uptake curves
- ✓ From calorimetry

✓ Final remarks

Column dynamics

What is your aim?

Synthesize better sorbents?

- Material
- Shape
- Properties

Design process units?

- Size
- Material
- Control

Optimize operations?

- Costs
- Maintenance
- Facilities

Understand the phenomena?

- Effects
- Simplifications
- Improvements

Necessary knowledge

- Which column size?
- Which flowrate?
- Is it reversible?
- How long do cycles last?
- Should columns be thermostated?
- Which operating conditions maximize purity, recovery from the feed, and minimize energy /solvent consumption?

Conservation equations

(mass, energy, momentum, electric charge)

pressure (N m⁻²)

Equilibrium laws at the interface(s)

Kinetic laws of heat/mass transfer and reaction

Optimization criterion

Classification of systems

Nature of equilibrium relationship

- Linear isotherm
- Favorable isotherm
- Unfavorable isotherm

Thermal effects

- Isothermal
- Near isothermal

Concentration level

- Trace systems
- Nontrace systems

Flow model

- Plug flow
- Dispersed flow

• Complexity of kinetic model

- Negligible transfer resistance
- Single transfer resistance
- Multiple transfer resistance

Adsorbents

- Types
- Structures
 - Homogeneous
 - Porous
 - Bidisperse

Properties

- Adsorption capacity
- Selectivity
- Kinetics
- Stability
 - Mechanical
 - Thermal
 - Chemical

✓Introduction – Concepts

- \checkmark Aims and basics
- ✓ Adsorption
- ✓ Adsorbents
- ✓ Column dynamics

✓ Modelling – Theoretical Background

- \checkmark Definitions and terminology
- ✓ Momentum, Material and Energy Balances
- ✓ Equilibrium theory
- ✓ Adsorption kinetics

✓Assessing mass transfer

- Simple fit to breakthrough curves
- ✓ From uptake curves
- ✓ From calorimetry

✓ Final remarks

An accurate process simulator is an important tool for learning, designing and optimization purposes.

Alírio E. Rodrigues

• Concentration profiles – $C_i(z)$ at a given t

• Concentration histories – $C_i(t)$ at a given z

Overall balance

$$QC_{i0}t_{st} = \varepsilon C_{i0}V + (1-\varepsilon)q_{i0}V$$

Moles introduced in the column

$$t_{st} = \tau \left(1 + \xi \right)$$

Total capacity =
$$Q \int_{0}^{t_f} (C_{i0} - C_i) dt$$

Useful capacity = $Q \int_{0}^{t_{bp}} (C_{i0} - C_i) dt$

$$\tau = \frac{\varepsilon V}{Q}$$
 Space time
$$\xi = \frac{(1-\varepsilon)}{\varepsilon} \frac{q_{i0}}{C_{i0}}$$
 Capacity factor

Concentration profile at t = t_{bt}

In general, one is interested in re-using the adsorbent for a relatively large numbers of cycles. Industrial sep processes alternate two steps:

- Adsorption: fluid phase is enriched with the weakly adsorbed species (raffinate)
- Desorption: fluid phase is enriched with the strongly adsorbed components (extract) and the adsorbent is regenerated to be used in another cycle (by temperature, pressure, pH or concentration swings)

Breakthrough of mixtures

Modelling adsorption processes

Modelling a fixed bed

Transport Phenomena

To model the dynamic behavior of an adsorption column is a problem far from trivial.

Momentum balance

Pressure drop in packed beds:

$$-\frac{\partial p}{\partial z} = \frac{150 \ \mu_g (1-\varepsilon)^2}{\varepsilon^3 \ d_p^2} \nu + \frac{1.75(1-\varepsilon) \ \rho_g}{\varepsilon^3 \ d_p} \nu^2$$

Blake-Kozeny equation

Burke-Plummer equation

Laminar Flow

Turbulent Flow

Material balance

Continuity – General Form: $\frac{\partial}{\partial t}C_{T}(z,t) + \nabla \cdot \mathbf{F}(z,t) - \mathbf{s}(z,t) = 0$

Considering the interparticle volume: $C_T = \frac{m}{V_T} = \varepsilon \frac{m}{V} = \varepsilon C_g$

adsorbent mass: ∂m adsorbed amount: ∂q_i bed porosity: ε

Flux – Accounting convective and dispersive effects: $\mathbf{F} = v C_T - D_{ax} \frac{\partial C_T}{\partial z}$ or $\mathbf{F} = \varepsilon v C_g - \varepsilon D_{ax} \frac{\partial C_g}{\partial z}$

Material "removal" rate: $s = -\frac{\partial Q}{\partial t}$ where Q is the amount of the species leaving the bulk phase in the control volume

Concentration inside the particle: $Q = \frac{m_P + m_A}{V}$

Defining the adsorbent (particle) volume: $V_A = V_T (1 - \varepsilon)$

and the pore volume: $V_P = V_A \varepsilon_P$

Then:
$$Q = (1 - \varepsilon) \cdot \left[\frac{m_P}{V_A} + \frac{m_A}{V_A} \right] = (1 - \varepsilon) \cdot \left[\varepsilon_P \frac{m_P}{V_P} + \frac{m_A}{V_A} \right]$$

Material balance

Defining the particle density: $\rho_s = \frac{m_s}{V_s}$

Thus:
$$Q = (1 - \varepsilon) \cdot \left[\varepsilon_P C_g + \rho_s \frac{m_A}{m_s} \right] = (1 - \varepsilon) \cdot \left[\varepsilon_P C_g + \rho_s \overline{q} \right]$$

Deriving to obtain $S = -\frac{\partial Q}{\partial t}$

We get:
$$s = -\frac{\partial}{\partial t} \left((1 - \varepsilon) \cdot \left(\varepsilon_P C_g + \rho_s \overline{q} \right) \right)$$

Where \overline{q} is defined as the average specific amount adsorbed:

$$\overline{q}(t) = \frac{1}{V_A} \int_0^{V_A} q(r, t) \cdot dV$$

Substituting equations:
$$\frac{\partial}{\partial t} \left(\varepsilon C_g \right) + \nabla \cdot \left(\varepsilon v C_g - \varepsilon D_{ax} \frac{\partial C_g}{\partial z} \right) + \frac{\partial}{\partial t} \left((1 - \varepsilon) \cdot \left(\varepsilon_P C_g + \rho_s \overline{q} \right) \right) = 0$$

Three reasonable assumptions are very often made:

- (i) bed porosity is homogeneous and constant along the bed
- (ii) particle porosity is the same for every adsorbent particle and
- (iii) the gas flows in only one dimension axially

$$\varepsilon \frac{\partial C_g}{\partial t} + \varepsilon \frac{\partial (v C_g)}{\partial z} - \varepsilon D_{ax} \frac{\partial^2 C_g}{\partial z^2} + (1 - \varepsilon) \cdot \left(\varepsilon_P \frac{\partial C_g}{\partial t} + \rho_s \frac{\partial \overline{q}}{\partial t} \right) = 0$$

adsorbent mass: ∂m adsorbed amount: ∂q_i bed porosity: ε

Energy Balance

heat convection ∂T_{q} heat transfer дz *dT*_s heat generation adsorbent mass: ∂m

adsorbed amount: ∂q_i bed porosity: ε

infinitesimal cross sectional cut of the adsorbent column

Analogously to the Continuity:

 $\frac{\partial}{\partial t}E(z,t)+\nabla\cdot\mathbf{F}(z,t)-s(z,t)=0$

Volumetric sensible heat in the control volume:

$$E = \frac{m}{V_{\tau}} c T = C c T$$

Temperature changes in the given control volume is represented by the temperature changes in the gas and in the solid phases

For the gas phase: $E_g = \frac{m_g}{V_\tau} \tilde{c}_g T_g = \varepsilon C_g \tilde{c}_g T_g$

For the solid:
$$E_s = \frac{m_s}{V_T} \hat{c}_s T_s = (1 - \varepsilon) \rho_s \hat{c}_s T_s$$

Energy Balance

Summing up and differentiating:

$$\frac{\partial E}{\partial t} = E_g + E_s = \varepsilon C_g \tilde{c}_g \frac{\partial T_g}{\partial t} + (1 - \varepsilon) \rho_s \hat{c}_s \frac{\partial T_s}{\partial t}$$

Considering identical temperature profiles for the fluid and solid phase in the adsorbent column operating at cyclic steady state: $T_g = T_s$

Then:
$$\frac{\partial E}{\partial t} = \left[\varepsilon C_g \tilde{c}_g + (1 - \varepsilon) \rho_s \hat{c}_s \right] \frac{\partial T_g}{\partial t}$$

Heat is transported through the adsorbent bed along with the fluid flow and dispersed analogously to the mass. The dispersion term can be simplified and evaluated by applying Fourier's method of separation of variables. Thus, the energy flux can be written as:

$$\mathbf{F} = \boldsymbol{E}_{conv} + \boldsymbol{E}_{disp} = \varepsilon \, v \, \boldsymbol{C}_{g} \, \tilde{\boldsymbol{c}}_{g} \, \boldsymbol{T}_{g} - \varepsilon \, \lambda \, \frac{\partial \boldsymbol{T}_{g}}{\partial z}$$

Applying the same assumptions as before:

- (i) bed porosity is homogeneous and constant along the bed
- (ii) particle porosity is the same for every adsorbent particle and
- (iii) the gas flows in only one dimension axially

bed
icle and
$$\nabla \cdot \mathbf{F}(z,t) = \varepsilon \ \widetilde{c}_g \left[C_g \ T_g \ \frac{\partial v}{\partial z} + v \ T_g \ \frac{\partial C_g}{\partial z} + v \ C_g \ \frac{\partial T_g}{\partial z} \right] - \lambda \ \frac{\partial^2 T_g}{\partial z^2}$$

Heat is generated in the system through adsorption and removed by conduction through the walls and later by convection with the environment.

$$\mathbf{s} = (1 - \varepsilon) \rho_{s} \left((-\Delta H) \frac{\partial \overline{q}}{\partial t} \right) - \frac{4 h_{w}}{d_{i}} \left(T_{g} - T_{w} \right)$$

Substituting and arranging:

$$\begin{bmatrix} \varepsilon C_{g} \tilde{c}_{g} + (1-\varepsilon)\rho_{s} \hat{c}_{s} \end{bmatrix} \frac{\partial T_{g}}{\partial t} + \varepsilon \tilde{c}_{g} \begin{bmatrix} C_{g} T_{g} \frac{\partial v}{\partial z} + v C_{g} \frac{\partial T_{g}}{\partial z} \end{bmatrix} \quad \text{or} \\ -\lambda \frac{\partial^{2} T_{g}}{\partial z^{2}} - \left((1-\varepsilon)\rho_{s} \left((-\Delta H) \frac{\partial \overline{q}}{\partial t} \right) - \frac{4 h_{w}}{d_{i}} (T_{g} - T_{w}) \right) = 0 \quad \text{or} \\ -\lambda \frac{\partial^{2} T_{g}}{\partial z^{2}} - \left((1-\varepsilon)\rho_{s} \hat{c}_{s} \end{bmatrix} \frac{\partial T_{g}}{\partial t} + (1-\varepsilon)\rho_{s} (-\Delta H) \frac{\partial \overline{q}}{\partial t} = 0 \end{bmatrix}$$

Additional equation - heat transfer from the wall to the environment:

$$\rho_{w} \hat{c}_{w} \frac{\partial T_{w}}{\partial t} = \alpha_{w} h_{w} (T_{g} - T_{w}) - \alpha_{wL} U_{g} (T_{w} - T_{\infty})$$

- No gradients in the radial direction?
- Plug flow with axial mass dispersion?
- Mass transfer into the particle in accordance to the linear driving force (LDF) model?
- Thermal equilibrium between the gas and the adsorbent?
- Adiabatic operation?
- Constant heat transfer coefficients?
- Homogeneous porosity along the bed?
- No pressure drop?

Equilibrium law

At interfaces: q

$$q_i^* = f(C_{g,i})$$

favorable

rectangular

with an inflection

D.M. Ruthven, Principles of Adsorption (1984) W. Kast, Adsorption aus der Gasphase (1987)

Primary influence

The shape and nature of the breakthrough curve are strongly influenced by the equilibrium

$$q^* = q_{\max} \frac{K \cdot p}{1 + K \cdot p}$$

Increasing the partial pressure

Flow [Norm]	Р	У	P _i	Partial Flow
mL/min	bar	%	bar	mL/min
100	10	10	1.0	10
150	15	10	1.5	10
200	20	10	2.0	10
300	30	10	3.0	10

"Simple is beautiful (and useful)"

- Isothermal operation
- Equilibrium reached instantaneously in each point of the bed: $q_i^* = \overline{q}_i$
- Plug flow
- Negligible pressure drop
- Negligible dispersion and mass transfer effects

the material balance

$$\varepsilon \frac{\partial C_{g,i}}{\partial t} + \varepsilon \frac{\partial (u_i C_{g,i})}{\partial z} - \varepsilon D_{ax} \frac{\partial^2 C_{g,i}}{\partial z^2} + (1 - \varepsilon) \cdot \left(\varepsilon_P \frac{\partial C_{g,i}}{\partial t} + \rho_s \frac{\partial \overline{q}}{\partial t} \right) = 0$$

becomes

$$u_{i} \frac{\partial C_{g,i}}{\partial z} + \frac{\partial C_{g,i}}{\partial t} + \left(\frac{1-\varepsilon}{\varepsilon}\right) \frac{\partial q_{i}^{*}}{\partial t} = 0$$

considering $q^* = f(C_{g,i})$

then
$$u_i \frac{\partial C_{g,i}}{\partial z} + \left(1 + \frac{1 - \varepsilon}{\varepsilon} f'(C_{g,i})\right) \frac{\partial C_{g,i}}{\partial t} = 0$$

since $\left. \frac{\partial z}{\partial t} \right|_c = -\frac{\frac{\partial C_{g,i}}{\partial t}}{\frac{\partial C_{g,i}}{\partial z}}_t$
it results in $\left. u_c = \frac{\partial z}{\partial t} \right|_c = \frac{u_i}{1 + \frac{1 - \varepsilon}{\varepsilon}} f'(C_{g,i}) \right.$ De

De Vault's Equation

Adsorption as a wave phenomenon

The velocity of propagation of a concentration C, *i.e.* u_c , is inversely proportional to the local slope of the isotherm f'(C)

unfavorable isotherms

Concentration profiles $C_i(z)$ at a given t

Dispersive Front

As C_i the local slope of the isotherm $f'(C_i)$ and u_c

Higher concentrations travel at lower velocities

favorable isotherms: "shock wave"

Concentration profiles $C_i(z)$ at a given t

Compressive (shock) Front

As C_i the local slope of the isotherm $f'(C_i)$ and u_c

Higher concentrations travel at higher velocities

Equilibrium theory

favorable isotherms: "shock wave"

Influence of the equilibrium

Axial dispersion

LPA CO₂

Mass transfer resistances

Axial dispersion and mass transfer resistances are to be considered

For favorable isotherms, the concentration front disperses up to a certain extent and assumes a CONSTANT PATTERN BEHAVIOR

For unfavorable and linear isotherms, the concentration front disperses continuously as it moves along the bed and hence follows a PROPORTIONATE PATTERN BEHAVIOR

What about kinetics? How to assess the phenomenon? How relevant can it be to the process?

Intraparticle kinetics

Remembering the material balance

$$\varepsilon \frac{\partial C_g}{\partial t} + \varepsilon \frac{\partial (v C_g)}{\partial z} - \varepsilon D_{ax} \frac{\partial^2 C_g}{\partial z^2} + (1 - \varepsilon) \cdot \left(\varepsilon_P \frac{\partial C_g}{\partial t} + \rho_s \frac{\partial q'}{\partial t} \right) = 0$$

$$\rho_s \frac{\partial q'}{\partial t} = \frac{\partial q}{\partial t}$$

 $[q'] = \frac{adsorbed \ amount}{adsorbent \ mass}$

 $[q] = \frac{adsorbed \ amount}{adsorbent \ volume}$

Homogeneous particle

$$\frac{\partial q}{\partial t} = D_h \cdot \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial q}{\partial r} \right)$$

Porous particle

 $\mathsf{R}_{\mathsf{p}} \qquad \varepsilon \, \frac{\partial C_p}{\partial r} + \frac{\partial q}{\partial t} = D_{p,e} \cdot \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial q}{\partial r} \right)$

Intraparticle kinetics

Adsorbed amount as a function of radius and time

q = f(r,t)

Averaging:

$$\overline{q}(t) = \frac{1}{V_A} \int_0^{V_A} q(r,t) \cdot dV$$

Linear Driving Force (LDF) approach:

$$\frac{\partial \overline{q}}{\partial t} = k_{LDF} \cdot \left(q^* - \overline{q}\right)$$

actual sorption kinetics

E. Glueckauf, Trans. Far. Soc., 51(11), (1955)

The LDF model works in practice!

Adsorptive separation process models require several sets of averaging of local kinetic properties, which are often lost during a series of integration processes.

The overall adsorption kinetics for a heterogeneous adsorbent can be described by a heterogeneous-LDF model, even though the kinetics in each adsorption site is Fickian.

✓Introduction – Concepts

- \checkmark Aims and basics
- ✓ Adsorption
- ✓ Adsorbents
- \checkmark Column dynamics

✓ Modelling – Theoretical Background

- \checkmark Definitions and terminology
- ✓ Momentum, Material and Energy Balances
- ✓ Equilibrium theory
- \checkmark Adsorption kinetics

✓Assessing mass transfer

- \checkmark Simple fit to breakthrough curves
- ✓ From uptake curves
- ✓ From calorimetry

✓Final remarks

"Simple Fit" - Experiment vs Simulation

From uptake curves

Convenience: during the measurement of equilibrium isotherms

- Continuous measurement of mass variation for each pressure step
- Mass and energy balances are used to estimate the mass transfer coefficient
- Relatively simple, but reliable
- Restricted to "non-instantaneous" adsorption
- LDF approach

From uptake curves

Equilibrium model

$$q_i^* = \frac{q_{m,i}(b_i P)^{1/n_i}}{1 + (b_i P)^{1/n_i}}$$

Adsorption kinetics

$$\frac{\partial \overline{q}}{\partial t} = k_{LDF} \cdot \left(q^* - \overline{q} \right) \qquad \qquad k_{LDF} = \frac{\Omega D_{\mu}}{r_{\mu}^2}$$

Energy Balance

$$m_s \hat{c}_{p,s} \frac{\partial T}{\partial t} = m_s \frac{\partial q}{\partial t} (-\Delta H) - h_{\text{ave}} A (T - T_{\infty})$$

Clausis-Clapeyron Natural convection coefficient

 $\Delta H = 28 \, kJ \, mol^{-1}$

 $h = 70 W m^2 K$

From uptake curves

From uptake curves

CO₂ and N₂ uptake curves

Estimated coefficients correspond to the minimum value fitting to experiments

From uptake curves

Breakthrough curves experiments were measured to validate the simulation model using the k_{LDF} values estimated from gravimetric experiments.

Model parameters used for fixed bed simulations

Adsorbent mass [kg]	0.155
Bed density ρ_L [kg m ⁻³]	$m_{ m ads}/V_{ m col}$
Bed porosity ε_L [-]	$1 - \left(\hat{V_p} + \hat{V_s}\right) \times \rho_L$
Particle density $\rho_p [\text{kg m}^{-3}]$	$ ho_{\scriptscriptstyle L}/\!ig(1\!-\!arepsilon_{\scriptscriptstyle L}ig)$
Particle porosity ε_p [-]	$1 - \left[\hat{V_s} / \left(\hat{V_s} + \hat{V_{\mathrm{po}}}\right)\right]$
Heat transfer coefficient [W m ² K]	100
Solid specific heat $\hat{c}_{p,s}$ [J kg ⁻¹ K ⁻¹]	820
Wall specific heat $\hat{c}_{p,w}$ [J kg ⁻¹ K ⁻¹]	477
Wall density ρ_w [kg m ⁻³]	786
Axial mass dispersion D_{ax} [m ² s ⁻¹] ^{a)} I	$D_{ax} = \frac{2u_i r_p}{Pe}; \frac{1}{Pe} = \frac{0.7 \varepsilon}{Re Sc} + 0.5$
Axial heat dispersion λ_{ax} [W m ⁻¹ K ⁻¹]	$\frac{\lambda_{ax}}{k_g} = (7 + 0.5 Pr Re)$

From uptake curves

Simulated results using the estimated coefficients showed good agreement with the experimental breakthrough data.

From uptake curves

Different coefficient values were used to evaluate the influence of the k_{LDF} on the relative concentration curve shape and the temperature history.

From uptake curves

Temperature histories are important to cross-check the method to estimate k_{LDF}

Using adsorption-related heat effects and heat transport to estimate mass transfer

Tian-Calvet microcalorimeter

Discontinuous procedure:

$$\begin{pmatrix} \frac{dQ_{rev}}{dn^{\sigma}} \end{pmatrix}_{T,A} + Vc \left(\frac{dp}{dn^{\sigma}} \right)_{T,A} = \Delta h_{ads}T, n$$

$$V_{calorimetric cell}$$

$$n_{adsorbed}$$

Heat peaks

Modelling – Defining the system

- Dosing cell
- Dead volume
- Calorimetric cell

Mass and Energy balances for each part

calorimetric cell with temperature control

Modelling – Assumptions

- Ideal gas behavior
- The dosing cell and the dead volume are under isothermal and non-adiabatic operation
- The pressure in the dead volume is the same of the calorimetric cell
- Two approaches for mass transfer: Linear Driving Force e Diffusion in a spherical particle

Dosing cell

$$\frac{dC_{v}}{dt} = -\frac{\dot{n}_{s}}{V_{v}}$$

$$C_{\nu}c_p\frac{dT_{\nu}}{dt} = \frac{h_{\nu}A_{\nu}}{V_{\nu}}(T_{01} - T_{\nu})$$

 $P_{v} = C_{v}RT_{v} \quad (EOS)$

$$\frac{dC_d}{dt}V_d = \dot{n}_s - \dot{n}_e$$

$$V_d c_p C_d \frac{dT_d}{dt} - V_d \frac{dP}{dt} = \dot{n}_s c_p (T_v - T_d) - h_c A_d (T_d - T_{01})$$

 $P_d = C_d R T_d \qquad (EOS)$

 $P_d = P$

Calorimetric cell

calorimetric cell with temperature control

$$\frac{dC_c}{dt}V_c = \dot{n}_e - m_s \frac{d\bar{q}}{dt}$$

$$V_c c_p C \frac{dT}{dt} - V_c \frac{dP}{dt} + m_s c_{ps} \frac{dT}{dt} + m_s \frac{d\bar{q}}{dt} (-\Delta H) + m_s c_p \bar{q} \frac{dT}{dt}$$
$$= \dot{n}_e c_p (T_d - T) - h_c A_c (T - T_c (R1))$$

P = CRT (EOS)

P = f(t) Measured – Needed for the solution

Calorimetric cell wall – Energy Balance

R1 < R < R2:

$$\rho_{c1}c_{c2}\frac{dT_c}{dt} = \frac{1}{R}K_{c1}\left(\frac{\partial}{\partial R}\left(R\frac{\partial T_c}{\partial R}\right)\right)$$

R2 <R < R3:

$$\rho_{c2}c_{c2}\frac{dT_c}{dt} = \frac{1}{R}K_{c2}\left(\frac{\partial}{\partial R}\left(R\frac{\partial T_c}{\partial R}\right)\right)$$

Boundary conditions:

$$h_c(T - T_c(t, R1)) = -K_{c1} \frac{dT_c}{dt}(t, R1) \qquad T_c(t, R3) = T_{02}$$

Initial condition: $T_c(0, R) = T_{02}$

Two approaches

1. Linear Driving Force

$$\frac{d\bar{q}}{dt} = k_{LDF}(q^* - \bar{q})$$

2. Diffusion

$$\frac{dq_p}{dt} = D_c \left[\frac{\partial q_p}{\partial r} + \frac{2}{r} \frac{\partial q_r}{\partial r} \right]$$

Boundary conditions:

$$\frac{\partial q_p}{\partial r}(t,0) = 0 \qquad q_p(t,rp) = q_E(P)\rho_p$$

Initial condition:

$$q_p(0,r) = q_E(P_i)\rho_p$$

Heat flux and total heat

The heat flux out of the cell is given by

$$Q_1 = -K_{c1}A_{c0}\frac{\partial T_c}{\partial R}(t,R2)$$

The total heat is calculated as follows

$$Q_{total} = \int_0^\infty Q_1 dt$$

Experimental procedure

- Heat of adsorption is determined prior to each run according to the equation for the total heat
- The kinetic parameters are then fitted k_{LDF} or $\frac{D_c}{R^2}$

Resistance transitions

Relationship between and the mass transfer resistances (film, macro and micropores)

$$\frac{1}{k_{LDF,i}} = \frac{R_p q_0}{3k_{f,i} C_0} + \frac{q_0 R_p^2}{15\varepsilon_p D_{p,i} C_0} + \frac{R_c^2}{15D_{c,i}}$$

AC Norit RB4 – Comparing with the uptake measurements

Sample	Method	k _{LDF} (s⁻¹)
AC Norit RB4	Uptake	0.1
	Calorimetry	0.13

AC Norit RB4 - Sensibility of the method

← KLDF.Q1 ← KLDF.Q1 ← KLDF.Q1

Estimating k_{LDF}

ACPX series – $k_{LDF} \times PSD$

Sample	k _{LDF} (1/s)	Dc/R ² (1/s)	Ratio
ACPX 22	0.075	0.004	19.7
ACPX 41	0.120	0.009	13.3
ACPX 76	0.136	0.009	14.9

Zeolite 13X

https://www.explainthatstuff.com/zeolites.html

	Sample	Method	Dc/R ²
	binderless	ZLC at 313 K	0.0009-0.0012
	13X zeolite	Calorimetry at 298 K	0.0013

✓Introduction – Concepts

- \checkmark Aims and basics
- ✓ Adsorption
- ✓ Adsorbents
- ✓ Column dynamics

Modelling – Theoretical Background

- \checkmark Definitions and terminology
- ✓ Momentum, Material and Energy Balances
- ✓ Equilibrium theory
- \checkmark Adsorption kinetics

✓Assessing mass transfer

- Simple fit to breakthrough curves
- ✓ From uptake curves
- ✓ From calorimetry

✓ Final remarks

What about breakthrough curves of systems with non-conventional adsorption isotherms?

A zoo of breakthrough curves

Wang et al, Nature, 453, 207, 2008

Hamon et al, JACS, 47, 17490, 2009

Xylenes adsorption in MOFs

pubs.acs.org/Langmuir

Modeling the Effect of Structural Changes during Dynamic Separation Processes on MOFs

Tom Remy, Gino V. Baron, and Joeri F. M. Denayer*

MIL-47 (V) – Materiaux de l'Institute Lavoisier

Octahedral metallic clusters $VO_4(OH)_2$ connected by terephthalic acid linkers

MIL-53 (Al) - Flexible MOF: "Breathing effect"

Breathing effect of (Al)MIL-53: narrowing of pores

Octahedral metalic cluster $AlO_4(OH)_2$ connected by terephthalic acid linkers

Unit cell 1500 Å³

1000 ų

up to 40%wt CO₂, organics

Serre et al, JACS 2002, 124, 13519-13526 Llewellyn et al, JACS. 2008, 130, 12808-12814.

CS 1: OX/EB breakthrough curves in MIL-53

From Rietveld refinement of in-situ DRX of OX adsorption in MIL-53 (Al), it was found that...

Fixed bed model equations (LDF)

$$D_{ax} \cdot \frac{\partial^2 C_i}{\partial x^2} - \frac{u}{\varepsilon} \cdot \frac{\partial C_i}{\partial t} - \frac{(1-\varepsilon)}{\varepsilon} \cdot \frac{\partial q_i}{\partial t} \cdot \rho_s = 0$$

$$\frac{\partial q_i}{\partial t} = K_{LDF} \cdot (q_i^* - q_i)$$

$$t = 0: \ C_i = 0 \quad (\forall z)$$

$$x = 0: \frac{u}{\varepsilon} \cdot (C_i - C_{i,in}) - D_{ax} \cdot \frac{\partial C_i}{\partial x} = 0$$

$$x = L: \ \frac{\partial C_i}{\partial x} = 0$$

ISOTHERM EQUATIONS

$$q_{\text{oX}}^{*} = q_{\text{satloX}} \cdot \frac{K_{\text{oX}} \cdot C_{\text{oX}}}{1 + K_{\text{oX}} \cdot C_{\text{oX}} + K_{\text{EB}} \cdot C_{\text{EB}}}$$
$$+ q_{\text{logoX}} \cdot \frac{K_{\text{oX}} \cdot C_{\text{oX}}}{1 + K_{\text{oX}} \cdot C_{\text{oX}}}$$
$$q_{\text{logoX}} = \left\{ \frac{K_{\text{log}} \cdot P_{\text{log}} \cdot \exp\left[r_{\text{log}} \cdot \left(\frac{P_{\text{tot}}}{P_{\text{go}}} - 1\right)\right]}{K_{\text{log}} + P_{\text{log}} \cdot \left[\exp\left[r_{\text{log}} \cdot \left(\frac{P_{\text{tot}}}{P_{\text{go}}} - 1\right)\right] - 1\right]} \right\}$$
$$q_{\text{EB}}^{*} = q_{\text{satEB}} \cdot \frac{K_{\text{EB}} \cdot C_{\text{EB}}}{1 + K_{\text{EB}} \cdot C_{\text{EB}} + K_{\text{oX}} \cdot C_{\text{oX}}}$$

CS2: MIL-47 (V) – a rigid MOF

Barthelet et al, Angew. Chem. 2002, 41(2), 281-284.

PX and MX isotherms in MIL-47 at 343 K

- No breathing
- Similar isotherms, although PX shows an inflexion point at 10^{-3} and 10^{-2} bar

Same trick applied to provide a mathematical description of PX isotherm

$$q_{pX}^{*} = q_{satpX} \cdot \frac{\kappa_{\log pX} \cdot C_{pX}}{1 + \kappa_{\log pX} \cdot C_{pX} + K_{mX} \cdot C_{mX}}$$

$$\kappa_{\log pX} = K_{0,pX} \cdot \left[1 + \frac{K_{\log} \cdot P_{\log} \cdot \exp\left[r_{\log} \cdot \left(\frac{q_{pX}}{q_{satpX}} + \left(\frac{q_{pX}}{q_{satpX}}\right)\right)\right]}{1 + \frac{K_{\log} \cdot P_{\log} \cdot \exp\left[r_{\log} \cdot \left(\frac{q_{pX}}{q_{satpX}} - \left(\frac{q_{pX}}{q_{satpX}}\right)\right)\right]}{\left[1 + \frac{K_{\log} + P_{\log} \cdot \left[\exp\left[r_{\log} \cdot \left(\frac{q_{pX}}{q_{satpX}} - \left(\frac{q_{pX}}{q_{satpX}}\right)\right)\right)\right] - 1\right]}\right]}$$

Finsy et al., *JACS (2008)* 130, 7110 Remy et al., Langmuir (2011) 27, 13064

Finsy et al., *JACS (2008)* 130, 7110 Remy et al., Langmuir (2011) 27, 13064

- Classical concepts such as phase equilibrium and transport phenomena have been revisited and applied to the description of adsorption dynamics in a fixed bed
- The correct analysis of batch adsorption data should provide scalable (design) parameters that will be useful not only for process design and optimization, but also to plan experiments in fixed bed in lab scale

We hope this is a small brick in bridging the gap between different approaches of adsorption scientists from more fundamental and more applied backgrounds

Our team

Diana Azevedo

Célio Cavalcante Jr.

Eurico Torres

Moises Bastos-Neto Enrique Vilarrasa-Garcia

Post-Doc Fellows

Laboratório de Pesquisa em Adsorção e Captura de CO2 *(Laboratory of Adsorption Research and CO2 Capture)* Universidade Federal do Ceara Campus do Pici – bloco 731 Fortaleza - Brazil

email: <u>mbn@ufc.br</u>

Thank you for your attention!