

MODIFIED ACTIVATED CARBON FOR DYNAMIC SOPRTION AND REACTION APPLICATIONS

DR. BERTRAM BÖHRINGER

MAY 14, 2019 LEIPZIGER SYMPOSIUM "DYNAMISCHE SORPTIONSVERFAHREN"

HOW TO MANUFACTURE AND CHARACTERIZE ACTIVATED CARBON

SCHEMATIC SKETCH OF ACTIVATED CARBON PRODUCTION

ACTIVATED CARBONS

Raw Materials (carbon source)Forms of ACCoalPowderedWoodGranularNutshellPelletizedPeatSphericalPolymerWoven

Marked: Basis of SARATECH polymer based spherical activated carbon (PBSAC)

REMOVAL OF PHARMACEUTICAL ACTIVE AGENTS FROM INDUSTRIAL WASTE WATER

PHARMACEUTICAL WASTE WATER

Phase I Proof of feasibility

- **Phase II** On-site trials with plug and play unit (SARATECH[®]- Pilot plant)
- **Phase III** Scale-up to an industrial wastewater treatment plant

PHARMACEUTICAL WASTE WATER - APPROACH

RAW WATER DATA

	Concentration median		Concentration max.	
AOX	12	mg/l	15	mg/l
COD	1.542	mg/l	3.837	mg/l
Annual volume	340	m ³		

Challenges:

- High volumes of wastewater to dispose
- Variation in volume, composition and quality of waste water
- Complex mixture of substances
- Lack of data on adsorption capacities necessary for engineering

→ Pharmaceutical wastewater requires a tailor-made treatment system

PHARMACEUTICAL WASTE WATER – LABORATORY RESULTS

Excellent Removal of a Range of Pharmaceutical Agents

PHARMACEUTICAL WASTE WATER – PILOT PLANT

- Mobile plant \rightarrow Determination of breakthrough curves and design parameters
- Simple to integrate without interrupting operations
- Small footprint (approx. 1 m²) and low weight (approx. 50 kg)
 - Ready to connect
 - PLC controller with optional remote access

PHARMACEUTICAL WASTE WATER – TREATMENT PLANT

- High removal rate of pharmaceutical agents (> 90 %)
- Compliance with the regulatory limits for COD and AOX in Wastewater
- Significant cost savings compared with other disposal alternatives

REMOVAL OF PESTICIDES FROM DRINKING WATER

EFFECTIVE REMOVAL OF PESTICIDES FROM DRINKING WATER

NO BREAKTHROUGH OF PESTICIDES WITH SARATECH®

Proprietary Information NOT to be used, copied or distributed without prior written permission

BLÜCHER®

EFFECTIVE REMOVAL OF PESTICIDES FROM DRINKING WATER

LONGER SERVICE LIFE WITH SARATECH®

Dynamic trial with drinking water (natural DOC), SARATECH® as polisher

Source: VFTV e.V. (2016)

*HOV = Health Orientation Value

Metazachlor-OA

Metazachlor-ESA

LONG SERVICE LIFE THANKS TO REGENERATION AND REACTIVATION

- Regeneration: Desorption of adsorbed substances from activated carbon surface:
 - Thermal treatment
 - Extraction, etc.

- Thermal regeneration: Desorption in an indirectly heated rotary tube kiln under an inert atmosphere
- Reactivation: Regeneration and addition of steam

FURTHER DEVELOPMENTS

SARATECH® CONTINUOUS COUNTERFLOW ADSORBER (CCA)

Process video available at: <u>https://youtu.be/A9gyI4mGP2k</u>

CONTINUOUS FLOW REACTOR FOR CATALYSIS

REQUIREMENTS FOR CATALYST SUPPORT

- Low pressure drop
- High mechanical stability
 - No dust
 - No abrasion during use
- Easy to regenerate / reuse

Proprietary Information NOT to be used, copied or distributed without prior written permission

VS.

PRESSURE DROP

Ergun equation

Definitions

- Δp is the pressure drop across the bed,
- L is the length of the bed (not the column)
- D_p is the equivalent spherical diameter of the packing
- ρ is the density of fluid,
- μ is the dynamic viscosity of the fluid
- v_s is the superficial velocity (i.e. the velocity that the fluid would have through the empty tube at the same volumetric flow rate)
- ϵ is the void fraction of the bed (bed porosity at any time)

CATALYST SYNTHESIS ON ACTIVATED CARBON

DISPERSION OF METAL (PD)

Metal is Highly Dispersed in Carbon Matrix

INFLUENCE OF REDUCTION TEMPERATURE ON METAL DISPERSION

Reduction Conditions: 5 Vol.-% H₂ in N₂

Metal Dispersion [%]

Average Crystallite Size [Å]

REACTION STEPS IN HETEROGENOUS CATALYSIS

Reaction Determining Steps

- Diffusion of reaktant (A) to catalysts (filmdiffusion)
- Transport of reaktant in the pores
- Adsorption of reaktant at active centre
- Reaction
- Desorption of prodcut (B) from active centre
- Transport of product off the pores
- Diffusion of product from catalyst to solution

EXAMPLE FOR CATALYST TEST IN BATCH

HYDROGENATION OF CINNAMIC ACID: OPTIMIZATION OF PORE STRUCTURE AND SYNTHESIS PARAMETERS LEAD TO BETTER PERFORMANCE

SEPARATION OF CATALYST

Spherical particles show faster separation compared to powder catalysts.

HYDROGENATION OF ALPHA PINENE

Reaction Condition

			Contact time
	Rate of flow / mL	Bed volume / min⁻	at catalst /
Test	min ⁻¹	1	min
1	1,2	0,56	1,8
2	10,3	4,94	0,2

Results

	alpha-	beta-			
	Pinene /	Pinene /	Pinane1 /	Pinane2 /	
Test	mass-%	mass-%	mass-%	mass-%	Conversion
Educt (test 1 + 2)	49,0	51,0	0,0	0,0	
Product (Test 1)	0,0	0,0	16,9	83,1	100,0
Product (Test 2)	12,1	0,3	14,6	72,9	87,6
Without catalyst	90,2	6,8	0,5	2,5	3,0

SUMMARY FLOW REACTORS

- Polmer based spherical activated carbon as catalyst support shows advantages in flow reactors
 - Low pressure drop
 - High mechanical stability
 - High purity (= low contamination)

THANK YOU FOR YOUR ATTENTION.

