Dynamics of front propagation in fixed-bed adsorbers

Andreas Seidel-Morgenstern

Max Planck Institute for Dynamics of Complex Technical Systems Otto von Guericke University Magdeburg

Personal experience

(Merck-Workshop "Preparative Chromatography", Darmstadt, 1991)

Cellulose Triacetate (CTA)

Enantiomers of Tröger's base (TB)

Structures of (-)-Tröger's base, (+)-Tröger's base

Hesse and Hagel "Eine vollstäindige Racemattrennung durch Elutions-Chromatographie an Cellulosetriacetat" Chromatographia, 277-280, 1973

Unusual shapes in series of overoaded peaks (mobile phase: benzene)

<u>Kinkel</u>, Reichert and Knöll, "Präparative chromatographische Enantiomerentrennung" GIT Verlag (Glas- und Instrumenten-Technik), Supplement 3/89 – Chromatographie, 1989, 104, Wiley

Why?

Single component adsorption equilibria

q = q(c, T = const.)

Brunauer The Adsorption of Gases and Vapors Princetown University Press, 1945

Giles et al. J. Am. Chem. Soc., 1960, 3973

Column balance: Conserving total mass

Mass balance (convection dominated):

$$\frac{\partial c}{\partial t} + \frac{1-\varepsilon}{\varepsilon} \frac{\partial q}{\partial t} + u_0 \frac{\partial c}{\partial x} = \mathbf{0}$$

If phases are permanently equilibrated:

$$\frac{\partial c}{\partial t}\left(1+\frac{1-\varepsilon}{\varepsilon}\frac{dq}{dc}\right)+u_0\frac{\partial c}{\partial x}=0$$

Concentration dependent migration velocities and retention times

$$-\frac{\frac{\partial c}{\partial t}}{\frac{\partial c}{\partial x}}\Big|_{c_*} = \frac{dx}{dt}\Big|_{c_*} = u_c(c_*) = \frac{u_0}{\left(1 + \frac{1-\varepsilon}{\varepsilon} \left|\frac{dq}{dc}\right|_{c_*}\right)}$$
$$t_R(L, c_*) = \frac{L}{u_c(c_*)} = \frac{L}{u_0}\left(1 + \frac{1-\varepsilon}{\varepsilon} \left|\frac{dq}{dc}\right|_{c_*}\right)$$

Rhee, Aris and Amundson, On the Theory of Multi-Component Chromatography Philosophical Transactions of The Royal Society, A, 267, 1970, 419-455; A, 269, 1971, 187–215 Guiochon et al., Fundamentals of Preparative and Nonlinear Chromatography, Academic Press, 2006

Andreas Seidel-Morgenstern, Leipzig, 14.5.2019

Andreas Seidel-Morgenstern, Leipzig, 14.5.2019

→ "larger concentrations move slower"

Chords vs. Tangents: "Rubber band rule"

Perry's Chemical Engineers' Handbook, 1984

Breakthrough curves for different feed concentrations

(Case: Langmuir type of isotherms)

Characteristics / Distance-Time-Diagram (Type I)

Shocks (Adsorption)

 $t_{R} = t_{0} \left(1 + \frac{1 - \varepsilon}{\varepsilon} \frac{q^{Feed} - q^{Init}}{c^{Feed} - c^{Init}} \right)$

Waves (Desorption)

$$t_{R}(L, c_{*}) = t_{0} \left(1 + \frac{1 - \varepsilon}{\varepsilon} \frac{dq}{dc} \Big|_{c_{*}} \right)$$

Series of single component breakthrough curves (different c^{Feed}, same feed volume)

2-Phenyl-Ethanol / Octadecyl Silica Methanol : Water = 1: 1 / ambient temperature

Seidel-Morgenstern, J. Chromat. A., 2004, 255

Influence of kinetics (e.g. back-mixing)

Equilibrium dispersion model

Measuring adsorption isotherms

Static methods

- \rightarrow no time dependences
- gravimetric
- shaking experiments
- adsorption/desorption cycles
- ...

Dynamic methods

- \rightarrow time dependent information recorded
- "Perturbation Method"
- elution by characteristic point (evaluation of waves)
- peak fitting ("Inverse Method")
- "Frontal Analysis (FA)"
- ...

Seidel-Morgenstern, J. Chromat. A, 2004, 255

Connection between breakthrough curves and equilibrium data

 $\varepsilon V(c_i^{Feed} - c_i^{Init}) + (1 - \varepsilon)V(\boldsymbol{q_i^{Feed}}(\boldsymbol{c^{Feed}}) - \boldsymbol{q_i^{Init}}) = \dot{V}\int_0^\infty (c_i^{Feed} - c_i(t))dt = \dot{V} * Area$

 \rightarrow Each front provides (only) one isotherm point

 \rightarrow Variations via other *c*^{*init*} and/or *c*^{*Feed*}

Other types of single component adsorption equilibria

Statistical thermodynamics

$$q = q_{s} \cdot c \frac{(P')^{N-1}(c^{N-1})}{P^{N}(c^{N})}$$

e.g.:
$$q = q_s c \frac{b_1 + 2b_2 c}{1 + b_1 \cdot c + b_2 c^2}$$

(quadratic isotherm model)

 \rightarrow special case: BET equation

Hill, Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, 1960

Corresponding breakthrough curves?

More complex single component behaviour

Type IV Isotherm with two inflection points (quadratic isotherm model)

Method of characteristics and "Rubber band rule"

More complex situation

Zhang, Shan and Seidel-Morgenstern, J. Chromat. A, 2006, 2016-225

Case study "TB and CTA" (1): Frontal analysis and isotherms

Case study "TB and CTA" (2): Single component dynamics

\rightarrow What about mixtures? Competitive isotherms needed.

Competitive adsorption isotherms

$$q_i = q_i(c_1, c_2, ..., c_N, T = const.) \quad i=1, N$$

Examples of competitive adsorption isotherm models

Classical competitive Langmuir model

$$q_{i} = q_{s,i} \frac{b_{i}c_{i}}{1 + b_{1} \cdot c_{1} + b_{2} \cdot c_{2}} = \frac{H_{i}c_{i}}{1 + b_{1} \cdot c_{1} + b_{1} \cdot c_{2}} \qquad i = 1,2$$

Multi-Bi-Langmuir model $q_i = q_{s,1} \frac{b_{1i}c_i}{1 + b_{11} \cdot c_1 + b_{12} \cdot c_2} + q_{s,2} \frac{b_{2i}c_i}{1 + b_{21} \cdot c_1 + b_{22} \cdot c_2} \qquad i = 1,2$

Statistical thermodynamics

$$q_{1} = q_{sat}c_{1} \frac{b_{1} + b_{12}c_{2} + 2b_{11}c_{1}}{1 + b_{1}c_{1} + b_{2}c_{2} + b_{12}c_{1}c_{2} + b_{11}c_{1}^{2} + b_{22}c_{2}^{2}}$$

Ideal Adsorbed Solution Theory (IAST)

- very general
- based on arbitrary single component isotherm models
- thermodynamically consistent

Myers and Prausnitz, AIChE Journal, 1965, 121

Ideal Adsorbed Solution Theory

$$q_i = q_i(c_1, c_2, ..., c_N, T = const.) \quad i=1, N$$

Gibbs' fundamental equation for adsorbed phase

$$dG = V \cdot dP - S \cdot dT + \mu \cdot dn$$
$$dG^{ads} = A \cdot d\pi - S^{ads} \cdot dT + \mu^{ads} \cdot dq$$

$$\mu^{ads} \cdot dq + q \cdot d\mu^{ads} = 0$$

Equilibrium at constant temperature

$$0 = A \cdot d\pi - q \cdot d\mu^{ads}$$

Chemical potentials

$$\mu^{ads} = \mu^{\ell} = \mu^{\ell, \text{ref}} + R T \ln \frac{C}{C^{\text{ref}}}$$

or $d\mu^{ads} = R T d \ln c$

Differential Gibbs' adsorption isotherm

$$A \cdot d\pi = R \cdot T \cdot \frac{q}{c} \cdot dc$$

Integrated Gibbs's adsorption isotherm generates Spreading Pressure π

$$\pi^{(mod)}(c^{*}) = \frac{A}{RT}\pi(c^{*}) = \int_{0}^{c^{*}}\frac{q(\xi)}{\xi}d\xi$$

Andreas Seidel-Morgenstern, Leipzig, 14.5.2019

Josiah Willard Gibbs (1839-1903)

Ideal Adsorbed Solution Theory

Identical reduced component specific spreading pressures

$$\pi_{i}(c_{i}^{0}) = \pi_{i+1}(c_{i+1}^{0}), \quad i = 1, ..., N-1,$$
$$\pi = \pi_{i}(c_{i}^{0}) = \int_{0}^{c_{i}^{0}} \frac{q_{i}^{0}(\xi)}{\xi} d\xi \quad i = 1, N$$

Ideal phases

$$C_i = Z_i \cdot C_i^0(\pi) \quad i = 1, N$$

Closure condition

$$\sum_{i=1}^{N} \frac{C_i}{C_i^0} = \sum_{i=1}^{N} Z_i = 1$$

Sub-set II

Required loadings q_i follow explicitly

Total concentration in the solid phase

$$q_{tot} = \left[\sum_{i=1}^{N} \frac{c_i(c_i^0)}{c_i^0 \cdot q_i^0(c_i^0)}\right]^{-1}$$

Solid phase concentration, loading of *i*

$$q_i = q_{tot} \cdot \frac{c_i}{c_i^0}, \qquad i = 1, N$$

Myers and Prausnitz, AIChE J., 1965, 121

Case study "TB and CTA" (3): Model validation for mixtures

 \rightarrow validates both isotherm (IAS) and simple column model (equilibrium dispersion)

Seidel-Morgenstern and Guiochon, Chem. Eng. Sci., 1993, 2787-2797

 \rightarrow Problem: time consuming numerical solution required

Rapid analytical solution of IAST for quadratic single component isotherm model

Quadratic isotherm equation

$$q_{i}^{0}(c_{i}^{0}) = q_{s} \cdot \frac{c_{i}^{0} \cdot (b_{i1} + 2 \cdot b_{i2} \cdot c_{i}^{0})}{1 + b_{i1} \cdot c_{i}^{0} + b_{i2} \cdot c_{i}^{02}} \qquad i = 1,2$$

$$\pi_{1}(c_{1}^{0}) = \pi_{2}(c_{2}^{0})$$

$$\int_{0}^{c_{1}^{0}} \frac{(b_{11} + 2 \cdot b_{12} \cdot \xi)}{1 + b_{11} \cdot \xi + b_{12} \cdot \xi^{2}} d\xi = \int_{0}^{c_{2}^{0}} \frac{(b_{21} + 2 \cdot b_{22} \cdot \xi)}{1 + b_{21} \cdot \xi + b_{22} \cdot \xi^{2}} d\xi \qquad 1 + b_{11} \cdot \frac{c_{1}}{z_{1}} + b_{12} \cdot \left[\frac{c_{1}}{z_{1}}\right]^{2} = 1 + b_{21} \cdot \frac{c_{2}}{1 - z_{1}} + b_{22} \cdot \left[\frac{c_{2}}{1 - z_{1}}\right]^{2}$$

Incorporation of closure condition: \rightarrow cubic equation

$$a_1(c_1,c_2) \cdot z_1^3 + a_2(c_1,c_2) \cdot z_1^2 + a_3(c_1,c_2) \cdot z_1 + a_4 = 0$$

$$\rightarrow$$
 unique root z_1 in [0,1], explicit analytical expression

$$z_2 = 1 - z_1, \qquad c_i^0 = \frac{c_i}{z_i}$$

 \rightarrow allows rapid calculation, frequently applicable

Explicit competitive isotherm model

 $q_{i}(c_{1},c_{2}) = \left[\frac{z_{1}}{q_{1}^{0}(c_{1}^{0})} + \frac{z_{2}}{q_{2}^{0}(c_{2}^{0})}\right]^{-1} \cdot z_{i} \qquad i = 1,2$

Ilić, Flockerzi and Seidel-Morgenstern, J. of Chromat. A, 2010, 2132

Frontal Analysis (FA) with binary mixtures ("point-wise" determination of loadings)

$$\varepsilon V(c_i^{Feed} - c_i^{Init}) + (1 - \varepsilon)V(\boldsymbol{q}_i^{Feed} - \boldsymbol{q}_i^{Init}) = \dot{V} \int_0^\infty (c_i^{Feed} - c_i(t))dt \quad i = 1,2$$

FA: Preloading and incomplete regeneration (binary system)

$$\varepsilon V(c_i^{Feed} - c_i^{Init}) + (1 - \varepsilon)V(q_i^{Feed} - q_i^{Init}) = \dot{V} \int_0^\infty (c_i^{Feed} - c_i(t))dt \quad i=1,2$$

Measured breakthrough curves for binary systems

\rightarrow <u>single transition</u>: two fronts and one intermediate state

Decylbenzene (1) and undecylbenzene (2) Porous graphitic carbon / Acetonitrile

\rightarrow adsorption desorption <u>cycle</u>

Rubiera-Landa, Dissertation, Magdeburg, 2017

Seidel-Morgenstern, J. Chromat. A., 2004, 255

Equilibrium theory for binary mixtures

$$\frac{\partial c_i}{\partial t} + \frac{1-\varepsilon}{\varepsilon} \frac{\partial q_i(c_1, c_2, \dots, c_N)}{\partial t} + u_0 \frac{\partial c_i}{\partial x} = 0 \qquad i = 1,2$$

with
$$dq_i = \sum_j^2 \frac{\partial q_i}{\partial c_j} dc_j \rightarrow \frac{dq_i}{dt} = \sum_j^2 \frac{\partial q_i}{\partial c_j} \frac{dc_j}{dt}$$
 or $\frac{dq_i}{dc_i} = \sum_j^2 \frac{\partial q_i}{\partial c_j} \frac{dc_j}{dc_i}$

$$\frac{\partial c_i}{\partial t} + \frac{1-\varepsilon}{\varepsilon} \sum_j^2 \frac{\partial q_i}{\partial c_j} \frac{dc_j}{dt} + u_0 \frac{\partial c_i}{\partial x} = 0 \quad \text{or} \quad \frac{\partial c_i}{\partial t} + \frac{1-\varepsilon}{\varepsilon} \sum_j^2 \frac{\partial q_i}{\partial c_j} \frac{dc_j}{dc_i t} \frac{dc_i}{dt} + u_0 \frac{\partial c_i}{\partial x} = 0$$
$$\frac{\partial c_i}{\partial t} (1 + \frac{1-\varepsilon}{\varepsilon} \frac{dq_i}{dc_i}) + u_0 \frac{\partial c_i}{\partial x} = 0$$

Coherence condition:
$$\frac{dq_1}{dc_1} = \frac{dq_2}{dc_2}$$

 $\left(\frac{dc_1}{dc_2}\right)^2 + \frac{\left(\frac{\partial q_2}{\partial c_2} - \frac{dq_1}{dq_1}\right)}{\frac{\partial q_2}{\partial c_1}}{\frac{\partial q_2}{\partial c_1}} = 0$
 $\Rightarrow 2 \text{ specific roots for each pair } [c_1^*, c_2^*]: \frac{dc_1}{dc_{2pos}}, \frac{dc_1}{dc_{2neg}}$

Rhee, Aris and Amundson / ... / Guiochon et al.

Equilibrium theory: Langmuir isotherms: $q_i = \frac{H_i c_i}{1 + b_1 \cdot c_1 + b_2 \cdot c_2}$

1.

3 unknowns A:
$$q_{S,1} = q_{S,2} \Rightarrow H_2 = \frac{b_2}{b_1} H_1$$

<u>Hodograph Plane:</u> \rightarrow 2 straight lines *dc*₁ $\overline{dc_{2}}_{neg}$ Inter_{des} $C_2^{Inter,des}$ C_2^{Feed} С,

Illustration of hodograph plots

2-Phenyl-Ethanol / 3-Phenyl-Propanol / Octadecyl Silica / Methanol:Water=1:1

Andreas Seidel-Morgenstern, Leipzig, 14.5.2019

Stair case breakthrough curves and corresponding hodograph plot

Graphical solution for binary breakthrough

(connection between isotherms, two retention times and one plateau concentration)

If isotherms provided:

\rightarrow 3 unknowns

1) $t_{R,2,ads}$ (from Shock 2)2) $c_1^{Inter,ads}$ (also Shock 2)3) $t_{R,1,ads}$ (from Shock 1)

Conclusions and Acknowledgement

- Knowledge regarding adsorption isotherms is essential to characterize adsorbents and to design adsorption processes
- To determine isotherms it is attractive to exploit dynamic experiments (e.g. FA)
- The determination of competitive adsorption isotherms is a difficult task

David Gelbin, East Berlin (1925-1986)

Klaus Unger, Mainz

(1953-2016)

Jochen Kinkel, Darmstadt

Georges Guiochon, Knoxville (1931-2014)